
CHAPTER 5

MULTIVARIATE POPULATIONS

5.1 INTRODUCTION

In the following chapters we will be dealing with a variety of problems con-
cerning multivariate populations. The purpose of this chapter is to provide an
introduction to the notions and basic inference methods concerning parame-
ters of a multivariate normal population. We will discuss the issues that arise
in making simultaneous inferences concerning means of correlated variables.
We will also address the problem of performing regressions on a number of
correlated variables. The problem of comparing a number of multivariate pop-
ulations will be addressed in Chapter 6, in which the multivariate regression
procedures will play a key role.
We encounter multivariate populations whenever we have to deal with two

or more measurements on some quantities that are correlated with each other.
A sample taken from any of the multivariate populations would then consist
of a vector of independent observations. This random vector may be a num-
ber of distinct response variables observed for each of the experimental units
comprising the sample. They could also be repeated measurements of one
variable observed at distinct time points. In short, we are now dealing with
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148 MULTIVARIATE POPULATIONS

a vector of possibly correlated responses or variables from a certain popula-
tion as opposed to a single variable representing the population. The vector
of observations may deal with the same characteristic, related characteris-
tics, or completely di¤erent characteristics concerning the experimental unit.
For example, the level of education and income of an individual may be two
characteristics we need to deal with. In another application, the correlated
variables that one is interested might be some test scores of students in a
number of college courses.
The purpose of this chapter is to outline some basic notions and infer-

ence methods in multivariate data analysis. In particular, various inferences
concerning the mean vector of a multivariate normal population will be dis-
cussed. The treatment of this chapter will cover both the classical procedures
and new procedures in this context including methods for computing exact
con�dence regions for the parameters of a multivariate regression model. The
problem of making inferences about the di¤erence in the mean vectors of two
multivariate normal populations including exact solutions to the Multivariate
Behrens�Fisher problem will be addressed in Chapter 6.

5.1.1 Notations

We will use bold face letters such asX andY to denote a multivariate random
vectors representing a population of interest. If the random vector X has p
components, then its components are denoted in alternative forms as

X =

0BBB@
X1
X2
...
Xp

1CCCA = (X1 X2 � � � Xp)0 :

The mean vector of a population will be denoted by lowercase Greek letters
such as � and the covariance matrix by uppercase Greek letters such as �. If
� represents the mean vector of a random vector X, it is de�ned as

� = E(X) =

0BBB@
EX1
EX2
...
EXp

1CCCA : (5.1)

The covariance matrix of X is de�ned as

� = Var(X) = E(X� �)(X� �)0; (5.2)

=

0BBB@
Var(X1) Cov(X1; X2) � � � Cov(X1; Xp)
Cov(X2; X1) Var(X2) � � � Cov(X2; Xp)
...

...
...

...
Cov(Xp; X1) Cov(Xp; X2) � � � Var(Xp)

1CCCA ; (5.3)
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respectively. Of course the covariance matrix is symmetric, as evident from

Cov(Xi; Xj) = Cov(Xj ; Xi) = E((Xi � E(Xi))(Xj � E(Xj)):

The characteristic function of the random vector X is de�ned as

�X(t) = Ee
it0X

;

where i =
p
�1 is the complex number representing the square root of -1 and

t is any p � 1 vector of real numbers. The characteristic function of a ran-
dom vector is not only useful in deducing the moments of the random vector,
but also particularly useful in deriving the distribution of linear combinations
of random vectors. The latter is possible because the characteristic function
uniquely identi�es the distribution of the random vector. Some useful prop-
erties of the characteristic function are as follows.

i. E(X) =1
i
d�X(t)
dt jt=0:

ii. Var(X) =d2�X(t)
dtdt0 jt=0 �E(X)E(X

0
):

iii. If X and Y are independent random vectors of same dimension, then the
characteristic function of their sum is equal to the product of their character-
istic functions; i.e.,

�X+Y(t) =�X(t)�Y(t): (5.4)

iv. If the random vector X and a t vector of constants are partitioned with
the same dimension as

X =

�
X1

X2

�
and t =

�
t1
t2

�
;

then,
(a) the characteristic function of the marginal distribution of X1 is found as
�X1

(t1) =�X(t1;0);
(b) the two random vectors X1 and X2 are independent if and only if

�X1;X2
(t1; t2) =�X1

(t1)�X2
(t2): (5.5)

As usual, a sample of size n taken from a multivariate population repre-
sented by a random vector X is denoted by X1;X2; : : : ;Xn: Unless otherwise
mentioned, we will assume that these are independent random observations.

5.2 MULTIVARIATE NORMAL POPULATIONS

In this book we are concerned only with normal populations. If some origi-
nal distribution was not multivariate normal, we assume that it has already
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been transformed into one that is multivariate normal. The de�nition of
a multivariate normal population is given below, which, in particular, im-
plies that each component of the random vector representing the population
is normal; that is, Xi � N(�i; �

2
i ); i = 1; 2; : : : ; p, where �i = E(Xi) and

�2i = E(Xi��i)2. Of course in the current context these components are pos-
sibly correlated and hence we have the need to express their joint distribution.
Muirhead (1982) and Anderson (1984), in particular, provide a comprehensive
discussion of the multivariate normal distribution and its properties. Here we
outline some main results that we will need in the applications undertaken in
this book.
Let X be a random vector representing a multivariate population. Suppose

its mean vector is � and its covariance matrix is �. Assume that � is positive
de�nite. Then, the joint probability density of a multivariate normal vector
X is given by

fX(x) =
1

(2�)p=2j�j1=2
e�(x��)

0��1(x��): (5.6)

That the p-dimensional random vector X has a multivariate normal distribu-
tion with mean vector � and covariance matrix is � is denoted as

X � Np(�;�): (5.7)

The characteristic function of X is given by

�X(t) =e
it0��t0�t=2: (5.8)

A few properties of the multivariate normal distribution that will prove to
be very useful in applications undertaken in this book are
(i) marginals of multivariate normal distribution are also normal,
(ii) linear transformations of a multivariate normal random vector is also
multivariate normal, and
(iii) the sum of two p-variate normal random vectors is also a p-variate normal
random vector.

Property (i) means that, the distribution of any subvector of the random
matrix X � Np(�;�) also has normal distribution with corresponding sub-
vector of mean and the subcovariance matrix. That is, if

X =

�
X1

X2

�
;

is a partition of X, then the distribution of the subvector X1 is given by

X1 � Nq(�1;�11); (5.9)

where q(< p) is the dimension of X1 vector and, the q � 1 mean vector �1
and the q� q covariance matrix �11 are obtained from the obvious partitions
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of the same dimension, namely

� =

�
�1
�2

�
and � =

�
�11 �12
�21 �22

�
:

To provide the precise formula for the second property, let A be a q � p full
rank matrix of constants and b be a q � 1 vector of constants, q � p. Then,
the distribution of the random vector Y = AX+ b is given by

Y � Nq(A�+ b;A�A0): (5.10)

Finally, Property (iii) means that if X1 � Np(�1;�1) and X2 � Np(�2;�2)
are independent random vectors, then

X1 +X2 � Np(�1 + �2;�1 +�2):

We can employ Property (ii) to standardize a multivariate normal vector,
namely,

if X � Np(�;�); then Z = ��1=2(X� �) � Np(0; Ip); (5.11)

where ��1=2 is a positive de�nite square root of matrix of �; if � = P0D�P
is a diagonalization of �, then the required square root is de�ned as

��1=2= P0Dp
�P;

where P is a p� p orthogonal matrix formed by eigenvectors of �, D� is the
diagonal matrix formed by eigenvalues of �; and Dp

� is the diagonal matrix
formed by positive square roots of eigenvalues of �. From the second and the
third properties we can deduce another result that will prove to be very useful
in sampling from a normal population. If Xi � Np(�i;�i); i = 1; 2; � � � ; n is a
set of independent random vectors and ai; i = 1; 2; � � � ; n is a set of constants,
then X

aiXi � Np(
X

ai�i;
X

a2i�i): (5.12)

The above properties can be established by using the properties of the
characteristic function (see Exercises 5.1 and 5.2) or direct manipulation of
the probability density function. For example, to prove Property (ii), we can
�rst �nd the characteristic function of the random vector Y = AX+ b as

�Y(t) = Eeit
0Y

= Eeit
0(AX+b)

= eit
0bEei(t

0A)X

= eit
0bei(t

0A)��(t0A)�(t0A)0=2

= eit
0(A�+b)�t0A�A0t=2:

But this is the characteristic function of the multivariate normal distribution
with the mean vector A�+ b and the covariance matrix A�A0, thus proving
the property.
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5.2.1 Wishart distribution

Another important distribution closely related to the multivariate normal dis-
tribution is the Wishart distribution. In fact in the order of importance and
usefulness in multivariate data analysis, it ranks second only to the multi-
variate normal distribution. The Wishart distribution is a multivariate gen-
eralization of the univariate gamma distribution and often arise in making
inferences about parameters of the multivariate normal distribution. In fact
the de�nition of the Wishart distribution was motivated by this need that
arised in sampling from a multivariate normal population.
If Zi � Np(0;�); i = 1; 2; : : : ; n; are independently and identically distrib-

uted multivariate random variables, then the random matrix

Q =
nX
i=1

ZiZi
0 (5.13)

is said to have a p-dimensional Wishart distribution with n degrees of free-
dom and parameter matrix � and is denoted as Q �Wp(n;�). The joint
probability density function of Q is given by

f(Q) =
cjQj(n�p�1)=2

j�jn=2 e�
1
2 tr�

�1Q for Q > 0, (5.14)

where c is a constant and by Q > 0 we mean that Q is positive de�nite. The
characteristic function of the Wishart distribution is

�Y(T) = jIp � 2i�Tj
�n=2

; (5.15)

where T is any symmetric matrix of real numbers.
The reader is referred to Rao (1973), Muirhead (1982), and Anderson

(1984) for various properties and derivations of the Wishart distribution.
Displayed below are some properties that we will be using in this follow-
ing chapters. The derivations of these properties are straightforward from the
de�nition of the Wishart distribution and the properties of the multivariate
normal distributions.

(i). If Q �Wp(n;�) and if A is a q � p constant matrix with q � p, then

AQA0�Wq(n;A�A
0); (5.16)

provided that A is of full rank.

(ii). If Q1 and Q2 are two independent Wishart matrices distributed as
Q1�Wp(m;�) and Q2�Wp(n;�), then the distribution of their sum is also
Wishart. More speci�cally,

Q1 +Q2�Wp(m+ n;�): (5.17)
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For Wishart distributions, it is also true that if Q1�Wp(m;�) and Q1 +
Q2�Wp(m + n;�), then Q2�Wp(n;�), provided that Q1 and Q2 are inde-
pendent, an implication of (5.17) that easily proved using the characteristics
function of the Wishart distribution.

(iii). If Q �Wp(n;�) is partitioned as

Q =

�
Q11 Q12

Q21 Q22

�
;

where is Q11is a q� q matrix with q � p, then the distribution of Q11 is given
by

Q11�Wq(n;�11); (5.18)

where �11 is the q� q matrix obtained by partitioning the matrix � the same
way as Q:

� =

�
�11 �12
�21 �22

�
:

5.3 INFERENCES ABOUT THE MEAN VECTOR

In the following sections we use the symbols X and Y to denote quantities
that are di¤erent from the above sections. Let us now use Y to denote a
vector of p responses of interest from a multivariate population and suppose
that data are available from n subjects or experimental units. Assume that Y
has a multivariate normal distribution with a mean vector � and a covariance
matrix �. Let Yi be the p� 1 vector of responses from ith subject. Assume
that

Yi � Np(�;�), i = 1; 2; : : : ; n, (5.19)

are mutually independent random vectors and that n > p. The main pur-
pose of this section is to develop procedures for making inferences about the
parameter vector �, the parameter of primary interest. Except for point esti-
mation, the problem of making inferences about the covariance matrix � will
be deferred until the next section.
In view of the de�nitions (5.7) and (5.8) of the parameters � and �, de�ne

the sample mean vector and the sample covariance matrix as

Y =

nX
i=1

Yi=n (5.20)

and

S =

nP
i=1

(Yi �Y)(Yi �Y)
0

n
; (5.21)
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respectively. In fact, these are maximum likelihood estimates (MLEs) of pa-
rameters. That the sample mean vector is indeed the MLE of the mean
parameter vector � is clear when the likelihood function is expressed as

L(�;�) =
1

(2�)np=2j�jn=2
e�

1
2

P
(yi��)0��1(yi��)

=
1

(2�)np=2j�jn=2
e�

1
2

P
(yi�y)0��1(yi�y)+n(y��)0��1(y��)

=
1

(2�)np=2j�jn=2
e�

n
2 tr(�

�1[S+(y��)(y��)0]): (5.22)

The MLE of the covariance matrix � can also be established by di¤erentiating
the log likelihood function

l(�;�) = log(L(�;�))

= �np
2
log(2�) +

n

2
log(j�j)� n

2
tr(�A)

and equating it to 0, where A = S+(y��)(y��)0 and � = ��1; the reader
is referred to Press (1982) for formulas for vector and matrix di¤erentiations.
Di¤erentiating l(�;�) with respect to � we get

dl(�;�)

d�
=
n

2
��1 � nA

2
:

Since A reduces to S at the MLE of �, the MLE of � is S, thus implying the
desired result. Two other important results that follow from (5.22) are that
(Y;S) are su¢ cient statistics for unknown parameters (�;�) and that Y and
S are independently distributed.
While Y is an unbiased estimate of �, the unbiased estimate of � based

on S is

b�=nS=(n� 1) =
nP
i=1

(Yi �Y)(Yi �Y)
0

n� 1 . (5.23)

The former is obvious from the expected values of the individual components
ofY and the latter can be easily proved by using the orthogonal decomposition

nX
i=1

(Yi � �)(Yi � �)
0
=

nX
i=1

(Yi �Y)(Yi �Y)
0
+ n(Y � �)(Y � �)0 (5.24)

and taking expected values of term by term to obtain

n� = E
nX
i=1

(Yi �Y)(Yi �Y)
0
+ n�=n:

The orthogonal decomposition (5.24) also implies that the sample mean vector
and the sample covariance matrix are independently distributed.
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From (5.12) we get
P
Yi � Np(n�;n�) and in turn

Y � Np(�;
1

n
�); (5.25)

It follows from the de�nition (5.21), (5.24), and Property (ii) of Wishart
distributions that the distribution of S is given by

nS =
nX
i=1

(Yi �Y)(Yi �Y)
0 �Wp(n� 1;�). (5.26)

For more rigorous proofs of the above results, the reader is referred to Rao
(1973), Muirhead (1982), or Anderson(1984).

Example 5.1. Study of Mathematics and Physics scores

Table 5.1 presents a set of standardized scores of a random sample of college
students. Let us �rst estimate the population parameters. Let � be the 2� 1
vector comprised of the student population score in Mathematics (X) and that
in Physics (Y ). Let � be the 2� 2 matrix comprised of variances of scores in
the two subjects and the covariance between them. In this application, the
sample size and the dimension of the multivariate population are n = 10 and
p = 2, respectively. The unbiased estimates of � and � obtained by applying
equations (5.21) and (5.23) are as follows:

b�=� 62:6
66:6

�
; b� = � 164:9 36:0

36:0 70:0

�
The mean score in Physics seems to be greater than that in Mathematics.
Later in this chapter we will test whether this di¤erence is statistically signi�-
cant or it is an artifact of the small sample size. Notice also that the variances
of the scores are fairly high. The correlation coe¢ cient between Physics and
Mathematics scores can be computed using the covariance and variances as

b� =
36:0p

164:9 � 70:0
= 0:335

5.3.1 Hypothesis Testing

Now consider the problem of testing the mean vector based on a random sam-
ple Y1;Y2; : : : ;Yn from a multivariate normal distribution Np(�;�). Sup-
pose the problem is to test the null hypothesis

H0 : � = �0 (5.27)
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Table 5.1 Standardized test scores

Mathematics Physics

72.8 69.9
46.0 68.9
59.2 58.4
66.7 78.2
84.2 63.9
50.4 54.6
49.6 66.5
77.9 71.6
63.9 77.2
55.1 56.8

against the alternative hypothesis H1 : � 6= �0. If the covariance matrix were
known, then the inferences about the mean vector �, including the problem
of testing the above hypothesis, can be based on the chi-squared statistic

V = n(Y � �)0��1(Y � �) ��2p. (5.28)

That the random variable V has a chi-squared distribution follows from 5.11,
because V can be expressed in terms of a set of standard normal random
variates as

V = ZZ0 =

pX
i=1

Z2i ;

where Z =
p
n��1=2(X� �) � Np(0; Ip) and Zi�s are the components of Z.

Typically � is unknown and so one instead uses

T 2 = n(Y � �0)
0
S�1(Y � �0) (5.29)

as the test statistic, which is commonly known as the Hotelling�s T 2 statistic
with p and n � 1 degrees of freedom. The distribution of the Hotelling�s T 2
statistic is related to a noncentral F distribution as

F (�) =
(n� p)
p(n� 1)T

2 =
n� p
p

(Y � �0)
0
S�1(Y � �0) � Fp;n�p(�), (5.30)

where � = (���0)
0
��1(���0) is the noncentrality parameter. For a proof

of this result, the reader is referred to Rao (1973) or Muirhead (1982). Under
the null hypothesis (5.27), the noncentral F distribution appearing in (5.30)
reduces to a central F distribution.
Since the right-tail probability of the T 2 statistic increases for deviations

from the null hypothesis, the right-tail probability serves as an unbiased test
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of H0, The p-value of the test can be computed as

p = Pr

�
F � n� p

p
(y � �0)

0
s�1(y � �0)

�
= 1�Hp;n�p(

n� p
p

(y � �0)
0
s�1(y � �0); (5.31)

where y is the observed value of Y, s is the observed value of S, and Hp;n�p
is the cumulative distribution function (cdf) of the F distribution with p and
n � p degrees of freedom. The null hypothesis H0 is rejected if the observed
value of p is too small; at �xed-level �, H0 is rejected if p � �. It can be
shown that the test given by (5.31) is also the likelihood ratio test of H0.

Example 5.2. Study of Mathematics and Physics scores (continued)

Consider again the data reported in Table 5.1. Now suppose we are interested
in testing the hypothesis

H0 : � =

�
65
70

�
:

The Hotelling T 2 statistic computed using (5.29) is

T 2 = 10
�
�2:4 �3:4

�� 164:9 36:0
36:0 70:0

��1� �2:4
�3:4

�
= 1:75:

Hence, the p-value for testing the hypothesis can be computed as

p = 1�H2;8
�

8

2� 9 � 1:75
�

= 1� :509
= 0:491:

This p-value does not support the rejection of the null hypothesis.

5.3.2 Con�dence Regions

Con�dence regions corresponding to the above unbiased test are easily derived
from the quantiles of the central F distribution,

F =
n� p
p

(Y � �)0S�1(Y � �) � Fp;n�p. (5.32)

The 100% con�dence ellipsoid given by this approach can be written as

n� p
p

(y � �)0s�1(y � �)� Fp;n�p() (5.33)
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or as

(y � �)0 b��1(y � �)�� p(n� 1)
n(n� p)

�
Fp;n�p();

where, for convenience, the observed value of b� is denoted by the same no-
tation, F

p;n�p() is the th quantile of the F distribution with p and n � p
degrees of freedom.

Example 5.3. Study of Mathematics and Physics scores (continued)

Consider again the data set reported in Table 5.1. We can now use formula
(5.33) to construct a con�dence ellipse for the mean vector � =

�
�x �y

�0
.

The 95% con�dence ellipse given by the formula is

0:0069��2x + 0:0169��
2
y � 0:0074��x��y < 1:003;

where
��x = �x � 62:6; and ��y = �y � 66:6:

Note, in particular that the vector of values hypothesized in Example 5.2,
namely � =

�
65 70

�0
falls well within this ellipse, because 0:0069 (2:4)2 +

0:0169 (3:4)
2 � 0:0074� (2:4) (3:4) = 0:175 is much less than 1:003.

5.4 INFERENCES ABOUT LINEAR FUNCTIONS OF �

Now suppose we need to test a certain linear combination of components of
the mean vector �. To be speci�c, consider a linear hypotheses of the form

H0 : A� = b; (5.34)

where A is a q � p matrix of rank q with known constants, b is a q � 1
vector of some hypothesized constants, and q � p. Procedures for testing the
hypothesis can be deduced from the foregoing results. It follows from (5.20)
that

AY � Nq(A�;
1

n
A�A0) (5.35)

and hence the corresponding Hotelling�s T 2 statistic becomes

T 2 = n(Ay � b)0(Ab�A0)�1(Ay � b). (5.36)

Now testing of the hypothesis (5.34) can be carried out using its distribution
given by

F =
n� q
q(n� 1)T

2 =
n� q
q

(AY � b)0(ASA0)
�1
(AY � b) � Fq;n�q (5.37)



INFERENCES ABOUT LINEAR FUNCTIONS OF � 159

when H0 is true. It is now evident that the p-value appropriate for testing H0
can be computed as

p = 1�Hq;n�q
�
n� q
q

(Ay � b)0(AsA0)�1(Ay � b)
�

(5.38)

and that the null hypothesis is rejected for small values of the p-value. Note,
in particular, that when p = 2 and A = ( 1 �1 ); this test reduces to the
classical paired t-test. More generally, this procedure could be utilized to test
the equality of all components of the mean vector � i.e., the equality of the
means of p correlated populations

H0 : �1 = �1 = � � � = �p. (5.39)

To derive a test for this hypothesis we can simply de�ne

A =

0BBBBB@
1 �1 0 : : : 0
0 1 �1 : : : 0
0 0 1 : : : 0
...

...
... : : :

...
0 0 0 : : : �1

1CCCCCA
set b = 0, and then compute the p-value using (5.38) with q = p� 1.

5.4.1 Simultaneous con�dence regions

Now consider the problem of making con�dence statements about one or more
sets of parameters based on the components of the mean vector �. The usual
100% con�dence ellipsoid for the parameter vector � = A� immediately fol-
lows from (5.37) as

n� q
q

(Ay � �)0(AsA0)�1(Ay � �) �F
q;n�q (). (5.40)

In particular, 100% con�dence intervals for one prespeci�ed linear combina-
tion of the form � = a0� can be deduced from (5.40) or derived from the fact
that

a0Y � N1(�;
1

n
a0�a) and (n� 1)a

0 b�a
a0�a

� �2n�1, (5.41)

where a is a p � 1 vector of known constants. From results concerning uni-
variate normal distributions, it is now obvious that the 100% equal-tail con-
�dence interval for � can be obtained as

a0y � tn�1((1 + )=2)
 
a0 b�a
n

!1=2
, (5.42)
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where tn�1(�) is the �th quantile of the Student�s t distribution with n � 1
degrees of freedom.
If there were r prespeci�ed linear combinations, a0i� of interest, simultane-

ous con�dence intervals for all parameters could be obtained by applying the
Bonferroni method. The conservative simultaneous intervals of level at least
100% that follow directly from (5.42) are

a0iy � tn�1(1� �=2r)
 
a0i
b�ai
n

!1=2
, i = 1; 2; : : : ; r, (5.43)

where � = 1� :
Sche¤e-type simultaneous con�dence intervals for all possible linear func-

tions of � or linear functions of � can be obtained using (5.40) with A0 =
[a1;a2; : : : ;aq] formed by all or �rst q � min(r; p) components of the �rst lin-
early independent (without loss of generality) q vectors thus making rank(A) =
q. Letting V = ((n � q)=q)AsA0 and � =(b���), it follows from the Sche¤e
inequality that

 = Pr
�
�0V�1� �F

q;n�q ()
�

= Pr(
(c0�)2

c0Vc
�F

q;n�q () for all c)

= Pr(c0� 2 c0b� � (c0VcF
q;n�q ())

1=2 for all c). (5.44)

Since the set of intervals

a0iy � k

 
ai b�a0i
n

!1=2
, i = 1; 2; : : : ; r (5.45)

is a subset of the above intervals, the con�dence level of simultaneous intervals
computed using (5.45) is at least , where

k = [q(n� 1)Fq;n�q ()=(n� q)]1=2:

If the desired linear combinations are prespeci�ed, then the Bonferroni inter-
vals are usually much shorter and hence preferred over the Sche¤e intervals.
If they are prespeci�ed and yet r is much larger than q, then the Sche¤e in-
tervals are preferred. If the linear combinations are not pre-speci�ed, then
the con�dence level of the Bonferroni intervals is not valid. In this case the
formula (5.45) is applied with q = p if simultaneous con�dence intervals for
any number of arbitrary linear combinations of means to be constructed, and
it is applied with q = p � 1 if con�dence intervals for all linear contrasts are
desired, such as all possible pairwise di¤erences of means. In particular, in
constructing simultaneous con�dence intervals for the individual means we
de�ne ai to be a vector of zeros except for the ith element which is 1. These
con�dence intervals as well as the tests discussed above can be computed using
most statistical packages such as SAS, SPlus, SPSS, and XPro.
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Example 5.4. Comparing cork borings thickness

Consider the data shown in Table 5.2, which was studied by Rao (1948) to
test whether the thickness of cork borings (in cm) on trees was the same in
the north, east, south, and west directions.

Table 5.2 Thickness of cork borings

N E W S

72 66 76 77
56 57 64 58
32 32 35 36
39 39 31 27
37 40 31 25
32 30 34 28
54 46 60 52
91 79 100 75
79 65 70 61
78 55 67 60
39 35 34 37
60 50 67 54
39 36 39 31
43 37 39 50
60 53 66 63
41 29 36 38
30 35 34 26
42 43 31 25
33 29 27 36
63 45 74 63
47 51 52 43
56 68 47 50
81 80 68 58
46 38 37 38
32 30 30 32
35 37 48 39
50 34 37 40
48 54 57 43

In this problem p = 4, n = 28, and the sample mean and the sample
covariances are

y=

0BB@
50:54
46:18
49:68
45:18

1CCA and b�=
0BB@
290:4 223:8 288:4 226:3
223:8 219:9 229:1 171:4
288:4 229:1 350:0 259:5
226:3 171:4 259:5 226:0

1CCA ,
the unbiased estimated of the mean vector � and the covariance matrix �,
respectively. Let � = (�1; �2; �3; �4)

0
= ��y. In this case, in constructing 95%
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con�dence regions we get Fp;n�p() = F4;24(:95) = 2:776, p(n � 1)=n(n � p)
= 0:1607, and the inverse of the sample covariance matrix is

b��1=
0BB@

0:0321 �0:0158 �0:0079 �0:0111
�0:0158 0:0221 �0:0050 0:0048
�0:0079 �0:0050 0:02667 �0:0190
�0:0111 0:0048 �0:0190 0:0337

1CCA .
Therefore, the 95% con�dence ellipsoid given by (5.33) for the mean vector
can be written as

0:0321�21 + 0:0227�
2
2 + 0:0267�

2
3 + 0:0337�

2
4

+2�1�2(�0:0158) + 2�1�3(�0:0078) + 2�1�4(�0:0111)
+2�2�3(�0:0050) + 2�2�4(0:0048) + 2�3�4(�0:0190) < 0:4462

To illustrate the use of hypotheses testing procedure, consider the particular
hypothesis H0 : � =

�
40 40 40 40

�
. The Hotelling�s T 2 statistic in this

case is 20.742, leading to an F -statistic of 6.40186 with 3 and 25 degrees of
freedom, and a p-value of 0.00659. This means that there is strong evidence
to rejects the null hypothesis. The value of the Hotelling�s T 2 statistic for
testing the hypothesis H0 : �1 = �2 = �3 = �4 is 326.181, leading to an F -
statistic of 72.4847 with 4 and 24 degrees of freedom, and a p-value of 0.00228.
This p-value also suggests the rejection of the hypothesis. The table below
shows the 95% simultaneous intervals for individual means computed using
the formulas (5.43) and (5.45).

Sche¤e Intervals

Mean Lower Bound Upper Bound

�1 39.15 61.92
�2 36.27 56.08
�3 37.18 62.18
�4 35.14 55.22

Bonferroni Intervals

Mean Lower Bound Upper Bound

�1 41.92 59.15
�2 38.68 53.68
�3 40.22 59.14
�4 37.58 52.78

In constructing the Sche¤e intervals for individual means, the appropri-
ate degrees of freedom for the F distribution are 4 and 24. In constructing
intervals for any number of contrasts using the Sche¤e method, in view of
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remarks made concerning (5.44), we could use the F distribution with 3 and
25 degrees of freedom. In particular, the 95% simultaneous intervals for all
possible 6 pairs of mean di¤erences are shown below along with Bonferroni
intervals obtained by setting r = 6. Note that the Bonferroni intervals are
shorter in both cases. The size of the Bonferroni intervals would be larger
if we were interested in some additional contrasts, whereas the length of the
Sche¤e intervals would remain unchanged regardless of the number of con-
trasts of interest. From these intervals, Rao (1948) made some interesting
observations. For example, the intervals suggest that the mean thickness of
cork borings in the direction of South is signi�cantly di¤erent from that of
East.

Sche¤e Intervals

Contrast Lower Bound Upper Bound

�1 � �2 -0.306 9.021
�2 � �3 -9.721 2.721
�3 � �4 0.061 8.939
�4 � �1 -10.06 -0.655
�1 � �3 -3.832 5.547
�2 � �4 -4.976 6.976

Bonferroni Intervals

Contrast Lower Bound Upper Bound

�1 � �2 0.093 8.622
�2 � �3 -9.189 2.189
�3 � �4 0.441 8.559
�4 � �1 -9.657 -1.058
�1 � �3 -3.431 5.146
�2 � �4 -4.465 6.465

5.5 MULTIVARIATE REGRESSION

In model (5.19) we assumed that the mean vector of Yi, the p � 1 vector of
responses, were the same for all n observations. When this is not true due
to some uncontrolled variables, we could still solve the problem by taking a
regression approach as in the univariate case, provided that some of the un-
controlled variables are observable. We do so by �tting a separate univariate
regression for each component of the Y vector. Since the response variable
of these regressions are correlated, the inferences about underlying parame-
ters can be made by taking a multivariate approach. In short, multivariate
regression is a multivariate extension of the univariate regression when we are
interested in a number of correlated dependent variables. As we will see in
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Chapter 6, multivariate regressions play an important role when we need to
compare a number of treatment groups based on some data that have been
collected according to some design. In the literature on regressions and their
applications, the vector Y is referred to as the dependent random vector, or
the vector of responses.
Let xi be a q � 1 vector of covariates available for describing some of the

variation in Yi. Let Y1; : : : ;Yn be set of independent observations of the
random vector Y while the covariates are possibly changing. Assuming a
regression model for each component of Yi we have

Yij = x
0
i�j + "ij ; i = 1; : : : n and j = 1; : : : ; p: (5.46)

The univariate regression model on jth component of the response variable
implied by (5.46) is

Yj = X�j + "j ; (5.47)

where Yj is a n � 1 vector formed by observations on the jth component of
the response variable, X is a n � q matrix formed by all observed values of
covariates and �j is a q � 1 vector of parameters. In applications involving
various designed experiments that we will undertake in the following chapters,
the X matrix is often referred to as the design matrix. If Yij values are used
to form Y0

i, a 1� n raw vector, we get another form of the model as

Y0
i = x

0
iB+ "i; (5.48)

where B is the q � p matrix of parameters formed by all �js, which is to
be estimated based on the independent observations Yi; i = 1; : : : ; n. Some
authors use this form of the model instead of the form (5.47) to introduce
the multivariate regression model. By piling column vectors in (5.47) or row
vectors in (5.48) we can express the two alternative forms of the model in a
compact form as

Y = XB+ "; (5.49)

where Y is a n � p matrix formed by observation from all dependent vari-
ables. The matrix X in this model is referred to as the matrix of covariates,
explanatory variables, or as the design matrix in various applications.
To make various inferences about the parameter matrix B beyond the point

estimation, we make the usual normality assumption that "i � Np(0;�). We
also assume that "1; : : : ; "n are independently distributed. These assumptions
imply that

V ec(") � Nnp(0;�
 In) and V ec(Y) � Nnp(V ec(XB);�
 In); (5.50)

where by V ec(") we mean the np � 1 vector obtained by piling components
of " all in one column.
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5.5.1 Estimation of regression parameters

As in the case of a common mean vector we discussed above, the regression
parameter matrix B can be estimated by applying a series of univariate re-
gressions using the form of the model (5.47). In other words, the covariance
matrix does not enter into the point estimation of components of B. As will
become clear later, however, the covariance matrix is important in interval
estimation and in hypothesis testing. From the univariate regression formula
for the estimate of �j , namely b�j = (X0X)

�1
X0Yj , we can then �nd the

estimate of B by piling the columns of estimated parameters as

bB =(X0X)
�1
X0Y: (5.51)

This is in fact the MLE as well as the unbiased estimate of B based on
su¢ cient statistics. To show that MLE of B is bB, we can use (5.50) to
express the likelihood function as

L(B;�) =

nY
i=1

f(yi)

= c(�) exp(�1
2

nX
i=1

(Y0
i � x0iB)�

�1
(Y0

i � x0iB)
0
)

= c(�) exp

�
�1
2
tr(��1(Y �XB)0(Y �XB))

�
; (5.52)

where c(�) = (2�)�np=2j�j�n=2. Now by decomposing B dependent factors
in (5.52) as

(Y �XB)0(Y �XB) = Y0
[In �X(X0X)

�1
X0]Y + (B� bB)0(X0X)(B� bB);

(5.53)
we can see that the likelihood function given by (5.52) is maximized when
B = bB, and that the MLE does not depend on the covariance matrix �: By
di¤erentiating (5.53) with respect to �, as we did in Section 5.3, it is also
seen (see Exercise 5.9) that

e�=1
n
(Y �XbB)0(Y �XbB) = 1

n
Y0[In �X(X0X)

�1
X0]Y (5.54)

is the MLE of �. The unbiased estimate of � based on the same statistics is

b�= 1

n� qY
0[In �X(X0X)

�1
X0]Y: (5.55)

Some important results that follow from the decomposition of (5.53) and from
the properties of the multivariate normal and Wishart distributions are:

(i) bB and b� are su¢ cient statistics for (B; �).
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(i) bB and b� are independently distributed.

(iii) The distribution of bB is given by

Vec(bB)� Npq(Vec(B);�
(X0X)
�1
): (5.56)

(iv) The distribution of b� is given by

(n� q)b��Wp(n� q;�): (5.57)

5.5.2 Con�dence regions

As in univariate regressions, it is easy to construct con�dence regions on
a single component �j of B based on the result c�j� Nq(�j ;�

2
jj(X

0X)
�1
)

and the fact that the �2jj can be tackled by its estimate, which is related to
the chi-squared distribution with n � q degrees of freedom that follow from
equation (5.57). Con�dence regions on the whole matrix of parameters B or
its submatrices are constructed based on the results,

E = (n� p)b� ~ Wp(n� q;�); (5.58)

H = (bB�B)0(X0
X)(bB�B) ~ Wp(q;�). (5.59)

That the second random matrix H also has a Wishart distribution is an
implication of (5.56). In general, if E ~ Wd(e;�) and H ~ Wd(h;�), the
following random variable, which arises from the likelihood ratio method,

U =
jEj

jE+Hj =
1

jId+HE�1j
;

is said to have a U distribution with d; h; and e degrees of freedom and is
denoted as

U� Ud;h;e . (5.60)

In terms of the U distribution, one can obtain a joint 100% con�dence region
for B as

fB j jIp +
1

n
(bB�B)0(X0

X)(bB�B)b��1j � �g, (5.61)

where � is the 1�th quantile of the U distribution with p; q and n�q degrees
of freedom. The probabilities of the U distribution are easily evaluated using
a set of independent univariate Beta random variates. The representation due
to Anderson expresses the U random variable as a product of beta random
variates as

U = B1B2 � � �Bd , where Bk � Beta(
e� k + 1

2
;
h

2
), (5.62)
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provided that e � d. The required condition e � d is usually the case when we
have adequate data for parameter estimation. When the dimension d of the
underlying Wishart distributions or h parameter is small, there are simpler
representations in terms of the F distribution:

When d = 1,
1� U
U

e

h
� Fh:e . (5.63)

When d = 2 and h � 2, 1� U
1=2

U1=2
e� 1
h

� F2h:2(e�1). (5.64)

When h = 1,
1� U
U

e+ 1� d
d

� Fd:e+1�d. (5.65)

When h = 2 and d � 2, 1� U
1=2

U1=2
e+ 1� d

h
� F2d:2(e+1�d). (5.66)

When d is large, perhaps the best way to compute probabilities and quantiles
of the U distribution is using a large number of random numbers generated
from each of the independent beta distributions in (5.62). The computations
are carried out in the following steps.

i. Generate a large N number, say N = 10000, random numbers from each of
the Beta random variables B1; B2; : : : ; Bd.

ii. Compute N random numbers from the U random variable using the for-
mula U = B1B2 � � �Bd.
iii. Estimate probabilities of the form Pr(U � u) required in hypothesis test-
ing by the fraction of U random numbers that are less than or equal to the
value of u.

iv. Sort the U random numbers in ascending order.

v. Estimate the quantiles required in constructing con�dence regions using
the corresponding value of the ordered U data; for example, when N = 10000,
estimate the 95th quantile of the U distribution by the 9500th value of the
ordered data set.
On the basis of the two Wishart statistics E and H, it is also possible to

construct con�dence regions for general linear combinations and contrasts of
the form, � = CBD, and test hypotheses of the form

H0 : CBD = 0,

where C and D are two matrices of constants. Appropriate choice of C and
D allows us to perform comparisons of contrasts of row-wise or column-wise
parameters of B. Let us di¤er this type of analysis as well as illustrations
until next chapter where the importance of such hypotheses becomes further
clear.
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Exercises

5.1 Let X � Nr(�;�) be a multivariate normal vector. Consider the par-
tition of X;

X =

�
X1

X2

�
;

so that X1 is of dimension p� 1, p < r. Using Property (iv) of characteristic
functions, show that the marginal distribution of X1 is given by

X1 � Np(�1;�11);

where p is the dimension of X1 vector and, the p � 1 mean vector �1 and
the p� p covariance matrix �11 are obtained from the partitions of the same
dimension as,

� =

�
�1
�2

�
and � =

�
�11 �12
�21 �22

�
:

5.2 Let X � Np(�x;�x) and Y � Np(�y;�x) be independent random
vectors of same dimension. Using Property (iii) of characteristic functions,
show that X + Y � Np(�x + �y;�x + �y). Hence deduce that if Xi �
Np(�i;�i); i = 1; 2; : : : ; n is a set of independent random vectors and ai;
i = 1; 2; : : : ; n is a set of constants, thenX

aiXi � Np(
X

ai�i;
X

a2i�i):

5.3 Using the properties of the characteristic function of the Wishart dis-
tribution, show that if Q �Wp(n;�) and if A is a q � p is a constant matrix
with q � p, then

AQA0�Wq(n;A�A
0):

Also deduce the above result from properties of the multivariate normal dis-
tribution and the de�nition of the Wishart distribution given by (5.13).

5.4 If Q1 and Q2 are two independent Wishart matrices distributed as

Q1�Wp(m;�) and Q2�Wp(n;�);

show (i) by using the characteristic function of the Wishart distribution and
(ii) by applying the de�nition of the Wishart distribution given by (5.13) and
using the properties of multivariate normal distribution that the distribution
of their sum is given by

Q1 +Q2�Wp(m+ n;�):

5.5 Let Yj � Np(�;�); j = 1; : : : ; n be a random sample from a multivari-
ate normal population. By di¤erentiating the log likelihood function given by
(5.21), derive the MLE of the mean vector �.
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5.6 Let Yj � Np(�;�); j = 1; : : : ; n be a random sample from a mul-
tivariate normal population. Show that the MLE of � can also be written
as b�=1

n

nX
i=1

YiY
0 �YY0

:

5.7 By expanding the identity

nX
i=1

(Yi � �)(Yi � �)
0
=

nX
i=1

�
(Yi �Y) + (Y � �)

� �
(Yi �Y) + (Y � �)

�0
;

show that
nX
i=1

(Yi � �)(Yi � �)
0
=

nX
i=1

(Yi �Y)(Yi �Y)
0
+ n(Y � �)(Y � �)0

is an orthogonal decomposition. Also argue why this result implies that the
sample mean vector and the sample covariance matrix are independently dis-
tributed.

5.8 Let Yj � Np(�;�); j = 1; : : : ; n be a random sample from a multi-
variate normal population. Using the characteristic function of the Wishart
distribution and the above results to prove that

nX
i=1

(Yi �Y)(Yi �Y)
0�Wp(n� 1;�).

5.9 Consider the problem of testing the hypothesis

H0 : � = �0

based on the random sample in Exercise 5.1. Show that the likelihood ratio
test is the same as the test given by (5.31).

5.10 Consider the multivariate regression model

Y = XB+ "; " � Nnp(0;�
 In):

By di¤erentiating the log likelihood function

ln(L) = c+
n

2
ln j�j�1

2
tr
�
��1(ne�+ (B� bB)0(X0X)(B� bB))� ;

with respect to B and �, show that

bB=(X0X)
�1
X0Y and e�=1

n
Y0[In �X(X0X)

�1
X0]Y

are their maximum likelihood estimates.
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Issue 1 Issue 2 Issue 3

178 128 156
146 135 139
125 127 132
167 156 163
142 148 152
98 102 104
130 124 132
148 131 139
164 140 155
155 132 156

5.11 Consider the sample of multivariate data shown in table below. The
data represents the weekly sales of three issues of a certain magazine at a
sample of supermarkets.

Assuming that the underlying population is multivariate normal,

(a) construct a 95% con�dence region for the vector of means � = (�1;�2;�3),
(b) construct 95% simultaneous con�dence intervals for �1��2 and �2 ��3,
(c) test the hypothesis that H0 : �1 > �2.

5.12 Consider the data in Table 5.1. Compute p-values and carry out tests
of each of following hypotheses:

(a) H0 : �1 + �2 + �3 + �4 � 195;
(b) H0 : (�1 + �2) = (�3 + �4);
(c) H0 :

�
�1 + �2 �3 + �4

�
�
�
100 100

�
:

5.13 Consider again the data in Table 5.1. Construct 95% con�dence re-
gions for each of the following quantities:

(a) sum of all four means,
(b) parameter, (�1 + �2)� (�3 + �4);
(c) parameter vector, � =

�
�1 + �2 �3 + �4

�0
.



CHAPTER 6

MULTIVARIATE ANALYSIS OF VARIANCE

6.1 INTRODUCTION

This chapter deals with multivariate extensions of the procedures we discussed
in Chapter 2 under Analysis of Variance. The extension of ANOVA to the
multivariate case is commonly known asMultivariate Analysis of Variance and
is abbreviated as MANOVA. We will also address the problem of extending
the solution to the Behrens�Fisher problem to the case of comparing two
multivariate normal populations. As will become clear later, some of the
problems in the Analysis of Repeated Measures can also be handled in a
MANOVA setting under alternative assumptions.
We encounter the MANOVA problem in comparing a number of popula-

tions when the underlying data consists of measurements on a number of de-
pendent variables. The variables could be a number of distinct response vari-
ables observed for each of the experimental units or subjects. They could also
be repeated measurements of one variable observed at distinct time points.
In short, unlike in ANOVA, we are now dealing with a vector of possibly
correlated responses or variables from each population as opposed to a sin-
gle variable from each population. As in the previous chapter, the vector of

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c 2013 John Wiley & Sons, Inc.
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observations may deal with the same characteristic, related characteristics,
or completely di¤erent characteristics concerning the experimental unit. For
example, the weight and height of one-year-old babies may be two charac-
teristics we are dealing with. In a MANOVA problem with such data, for
instance, one may be interested in comparing mean values of these variables
for a number of ethnic groups in a certain income bracket. In this case, we
would need a random sample of babies from each group from a certain popula-
tion of subjects. In another application the only response variable of interest
might be the blood pressure of some patients undergoing some treatments,
and yet they are observed over time thus leading to a set of correlated vari-
ables. Yet in another application of di¤erent kind, one may wish to compare
the crime rates of some cities of interest with data reported for a few months
on a number of crimes.

6.2 COMPARING TWO MULTIVARIATE POPULATIONS

Suppose we have data from two multivariate populations, which we wish to
compare. Let p be the dimension of the random vectors representing the
two populations. The purpose of this section is to make inferences about the
di¤erence in the mean vectors of the two populations. Let Y11; : : : ;Y1m be a
sample of p�1 vector of responses from Population 1, and let Y21; : : : ;Y2n be
a p� 1 vector of responses from Population 2. Assume that both populations
are normally distributed and that the observations are independent; i.e.,

Y1j � Np(�1;�1), j = 1; 2; : : : ;m

Y2j � Np(�2;�2), j = 1; 2; : : : ; n. (6.1)

In this section let us also make the additional assumption that the two covari-
ance matrices are equal, an assumption that we will relax in the next section.
Let � = �1 = �2 be the common covariance matrix. Denote by Y1 and Y2

the sample means of the two sets of data de�ned as in the previous section.
The unbiased estimate of the covariance matrix based on all the data is

V=
W

m+ n� 2 ,

where

W =
mX
j=1

(Y1j �Y1)(Y1j �Y1)
0
+

nX
j=1

(Y2j �Y2)(Y2j �Y2)
0.

Consider the problem of making inferences about the di¤erence in the two
mean vectors � = �1 � �2. This can be accomplished by taking an approach
similar to that in Chapter 5 concerning the mean vector of a single population.
It follows from (6.1) that the counterpart of the distribution given in (5.25) is

Y1 �Y2 � Np(�1 � �2;
�
1

m
+
1

n

�
�),
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whereas the counterpart of (5.26) is

W �Wp(m+ n� 2;�) . (6.2)

Let � = �1 � �2 be the vector of mean di¤erences. A statistic appropriate
for testing hypotheses of the form

H0 : � = �0 (6.3)

and for constructing con�dence regions for �1 � �2 is the Hotelling�s T 2
statistic

T 2 =
mn

m+ n
(Y1 �Y2 � �)0V�1(Y1 �Y2 � �); (6.4)

whose distribution is given by

F =
m+ n� p� 1
p(m+ n� 2) T

2 � Fp;m+n�p�1 . (6.5)

If the � is hypothesized as �0 in the computation of the Hotelling�s T 2 statistic,
then the above distribution would become a noncentral F distribution instead
of the central F distribution. Now it is evident that the appropriate p-value
for testing H0 is

p = Pr(T 2 � mn

m+ n
(y1 � y2 � �0)

0
v�1(y1 � y2 � �0))

= 1�H
�
r(y1 � y2 � �0)

0
v�1(y1 � y2 � �0)

�
, (6.6)

where
r =

m+ n� p� 1
p(m+ n� 2)

mn

m+ n
;

H = Hp;m+n�p�1 is the cdf of the F distribution with p and m + n � p � 1
degrees of freedom, v is the observed value of V, and y1 � y2 is the observed
value of Y1 �Y2. The 100% con�dence ellipsoid of � = �1 � �2 based the
Hotelling�s T 2 statistic is

r(y1 � y2 � �)
0
v�1(y1 � y2 � �) �Fp;m+n�p�1(), (6.7)

where F
p;m+n�p�1() is the th quantile of the F distribution with p and

m+ n� p� 1 degrees of freedom.

6.2.1 Simultaneous con�dence intervals for di�erences in means

Sche¤e-type simultaneous con�dence intervals for individual components of �
or any other linear function could be constructed as before by considering the
class of all linear functions and by an argument as in (5.44). The counterpart
of (5.45) obtained for linear combinations �i= a0i� is
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a0i(y1 � y2)� k
�
(
1

m
+
1

n
)aiva

0
i

�1=2
, i = 1; 2; : : : ; r, (6.8)

where

k =

�
q(m+ n� 2)
(m+ n� q � 1)Fq;m+n�q�1()

�1=2
and q = p when the con�dence level is ensured for any number of linear
combinations. In constructing simultaneous con�dence intervals for individual
mean di¤erences, the vectors ai are de�ned to be vectors of zeros except for
the ith element which is 1. It follows from the distributions

a0(Y1 �Y2) � N1(�; (
1

m
+
1

n
)a�a0)

and

(m+ n� 2)aVa
0

a�a0
� �2m+n�2 (6.9)

that the form of the Bonferroni intervals could also be found by using (6.8)
except for the de�nition of k . It is now obvious that in the present situation
k should be computed as

k = tm+n�2(1� �=2r) , (6.10)

where � = 1� .

Example 6.1. Comparison of two diet plans

In a comparison of two diet plans, 11 men in a certain weight category were
placed on diet Plan 1 and 13 other men in the same category were placed
on diet Plan 2. Their weights were measured just before the diet and then
later in one month and two months after being on the diets. Table 6.1 below
shows the observed data from this repeated measures experiment, which one
can analyze by alternative methods under alternative assumptions. Here let
us analyze the data by applying the above methods.
Also shown in Table 6.1 are the sample means at three time points for each

of the two diet plans. A plot of the sample means is shown in Figure 6.1.
The �gure indeed suggests that diet Plan 2 had a signi�cant e¤ect in reducing
the weights. It is also clear from the �gure that, even though all experimental
subjects came from the same weight category, subjects placed under diet Plan
2 had substantially higher mean weight to start with. The question is whether
or not the weight loss is statistically signi�cant. This we can establish by
applying the Hotelling T 2 test. In this application, however, it makes more
sense to compare the weight losses rather than the weights themselves. This
may also reduce the among-subject variation. Table 6.2 shows the weight loss
of individual subjects in the two diet plans, obtained by subtracting weights
after the diet from the weights before the diets.
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Table 6.1 Subject weights (in pounds)before and after the diet

Diet Plan Subject Before Month 1 Month 2

1 1 169 166 166
1 2 152 157 154
1 3 167 168 167
1 4 150 149 151
1 5 167 160 159
1 6 151 143 142
1 7 153 158 154
1 8 156 160 158
1 9 163 169 164
1 10 153 156 154
1 11 157 150 149

1 Means: 158.0 157.8 156.2

2 12 183 174 172
2 13 160 157 154
2 14 158 156 157
2 15 167 156 159
2 16 150 145 146
2 17 171 172 170
2 18 166 162 162
2 19 159 151 151
2 20 183 161 164
2 21 168 157 157
2 22 163 156 158
2 23 176 158 156
2 24 165 162 160

2 Means: 166.9 159.0 158.9

The mean vectors of weight losses for the two diet plans are y1 = (0:182; 1:819)
and y2 = (7:846; 7:923), respectively. The sample covariances computed from
the two data sets are

V1 =

�
28:36 22:04
22:04 19:36

�
and V2 =

�
42:31 37:24
37:24 36:24

�
,

respectively. The pooled sample covariance matrix computed from them,
under the assumption of equal covariance matrices, is

V =

�
35:97 30:33
30:33 28:57

�
:

Notice that, even after subtracting the weight of each subject before the ex-
periment, the two data vectors are still correlated. The p-value for testing the
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Figure 6.1 Mean weights by diet plan

Table 6.2 Weight loss (in pounds)

Diet Plan 1 Diet Plan 2
Month 1 Month 2 Month 1 Month 2

3 3 9 11
-5 -2 3 6
-1 0 2 1
1 -1 11 8
7 8 5 4
8 9 -1 1
-5 -1 4 4
-4 -2 8 8
-6 -1 22 19
-3 -1 11 11
7 8 7 5

18 20
3 5

equality of the two mean vectors can now be computed by applying formula
(6.6). The p-value of 0.020 computed in this manner suggests the rejection
of the null hypothesis. Hence, the expected superiority of Diet Plan 2 is in-
deed statistically signi�cant. The 95% simultaneous con�dence intervals for
the di¤erence in individual means, namely (-13.6, -1.734) for the di¤erence
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in means after one month, and (-11.4, -0.82) for the di¤erence in means after
two months, computed with the Bonferroni level adjustment, further support
the conclusion.

6.3 MULTIVARIATE BEHRENS�FISHER PROBLEM

In the treatment of the previous section, we assumed that the covariance
matrices of the two populations being compared are equal. The problem
of comparing multivariate normal mean vectors without that assumption is
commonly known as the Multivariate Behrens�Fisher Problem. There are a
number of approximate and exact solutions to the problem in the literature
on this subject. A number of studies, including the recent article by Chris-
tensen and Rencher (1997), showed that many approximate solutions tend
to have Type I error well exceeding the nominal level. Bennett (1963) gave
an exact solution to the problem of testing the equality of two normal mean
vectors by taking the approach of Sche¤e (1943) in the case of univariate nor-
mal populations. It is well known that this solution is far from being most
powerful, because it is not based on su¢ cient statistics. Johnson and Weera-
handi (1988) provided a Bayesian solution to the problem that does not su¤er
from that drawback. By taking the generalized p-value approach, Gamage
(1997) provided an upper bound for the p-value, and Gamage, Mathew, and
Weerahandi (2004) obtained exact generalized p-values and con�dence regions
without using Bayesian arguments. The con�dence region given by the gener-
alized p-value approach is also numerically equivalent to the Bayesian solution
under the noninformative prior.
To outline their results, consider the problem of testing hypotheses of the

form H0 : � = �0; where � = �1 � �2. A set of su¢ cient statistics for the
problem are

Y1;Y2;W1 =
mX
j=1

(Y1i �Y1)(Y1i �Y1)
0
; (6.11)

and

W2 =

nX
j=1

(Y2j �Y2)(Y2j �Y2)
0.

Theses random vectors are independently distributed as

Yi � N(�i;
�i
ni
); Wi �Wp(ni � 1;�i); i = 1; 2; (6.12)

where n1 = m and n2 = n. The unbiased estimates of the covariance matrices
based on Wi are Si = Wi=(ni � 1); i = 1; 2: A class of solutions, non-
Bayesian as well as Bayesian, could be derived based on observable random
vectors in (6.12). Here only a natural solution, having relationships with the
solutions to the univariate problem and the solution under equal covariance
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matrices, is presented. The generalized p-value that Gamage, Mathew, and
Weerahandi (2004) obtained for testing hypothesis (6.3) is

p = Pr(T (v) � (y1 � y2 � �0)
0
�
s1
n1
+
s2
n2

��1
(y1 � y2 � �0)); (6.13)

where
T (v) = Z0(v

1=2
1 R�1

1 v
1=2
1 +v

1=2
2 R�1

2 v
1=2
2 )Z

is a test variable, vi is the observed value of

Vi = (ni � 1)
�
s1
n1
+
s2
n2

��1=2
Si
ni

�
s1
n1
+
s2
n2

��1=2
; i = 1; 2, (6.14)

and the probability is computed in terms of

Z �N(0; Ip) and Ri �Wp(ni � 1; Ip) ; i = 1; 2. (6.15)

6.3.1 Derivation of the Gamage�Mathew�Weerahandi test
De�ne a set of transformed covariance matrices as

�i = g(s)
�1=2�i

ni
g(s)�1=2, i = 1; 2; (6.16)

where
g(s) =

s1
n1
+
s2
n2

(6.17)

and by square root notation of a positive de�nite matrix we mean its square
root constructed using the positive square roots of its eigenvalues. More
precisely, if A is a positive de�nite covariance with the spectral decomposition

A = Q0DQ;

then its square root matrix is de�ned as

A1=2 = Q0D1=2Q;

where Q is the matrix formed by eigenvectors of A and D is the diagonal
matrix with eigenvalues on its diagonal. To show that T (v) is a test variable
appropriate for testing the hypothesis (6.3), de�ne the Z random vector as

Z =(�1 + �2)
�1=2g(s)�1=2(Y1 �Y2��0). (6.18)

It follows from (6.12) that, under H0;

g(s)�1=2(Y1 �Y2��0) � N(0;�1+�2)
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and hence Z �N(0; Ip) as required in (6.15). From (6.12) we also get

Vi = (ni � 1)g(s)�1=2
Si
ni
g(s)�1=2 �Wp(ni � 1;�i); (6.19)

and in turn v�1=2i Viv
�1=2
i �Wp(ni � 1;v�1=2i �iv

�1=2
i )� Hence we can de�ne

the Ri matrix appearing in (6.15) as

Ri = (v
�1=2
i �iv

�1=2
i )�1=2(v

�1=2
i Viv

�1=2
i )(v

�1=2
i �iv

�1=2
i )�1=2(6.20)

� Wp(ni � 1; Ip); i = 1; 2: (6.21)

Notice that at the observed point of the sample space, Ri takes on the value
v
�1=2
i �iv

�1=2
i . Consequently, when Z; R1; and R2 are de�ned as in (6.17)

and (6.20), the observed value of the potential test variable

T (v) = Z0(v
1=2
1 R�1

1 v
1=2
1 +v

1=2
2 R�1

2 v
1=2
2 )Z (6.22)

becomes

t = (y1 � y2 � �0)
0
g(s)�1=2��1=2sum �sum�

�1=2
sum g(s)

�1=2(y1 � y2 � �0)
= (y1 � y2 � �0)

0
g(s)�1(y1 � y2 � �0) , (6.23)

where �sum = �1 + �2. Moreover, the distribution T (v) is free of unknown
parameters and Pr(T (v) � t) increases for any deviation from the null hypoth-
esis, given R1 and R2. Also note that T (v) is a positive de�nite quadratic
form leading to a distribution having linear combinations of noncentral chi-
squared random variates with the noncentrality parameter becoming zero only
under H0. This fact will become further clear later in this section. Hence,
T (v) is a test variable appropriate for testing H0 and its generalized p-value is
given by (6.13). Gamage, Mathew, and Weerahandi (2004) also showed that
this test is invariant under transformations, which leaves the testing problem
invariant.

6.3.2 Computing the generalized p-value

In computing the generalized p-value given by (6.13) it is convenient and
numerically much more advantageous if it is expressed in terms of univariate
random variables. To do this, de�ne

Ui = v
1=2
i R�1

i v
1=2
i �Wp(ni � 1;v�1i ); i = 1; 2 (6.24)

from (6.20). In terms of these random variables, the test variable can be
expressed as

T (v) = Z0(U
�1
1 +U�1

2 )Z. (6.25)

Now de�ne

Qi =
Z0viZ

Z0U�1
i Z

� �2ni�p , i = 1; 2. (6.26)



180 MULTIVARIATE ANALYSIS OF VARIANCE

That these are chi-square random variables follow from the fact that, condi-
tionally given Z, Qi � �2ni�p, which does not depend on Z, and hence it is
also the unconditional distribution. Consequently,

T (v) = Z0(U
�1
1 +U�1

2 )Z =
1

Q1
Z0v1Z+

1

Q2
Z0v2Z; (6.27)

where Z � N(0; Ip), Q1 and Q2 are independent. This representation of the
test variable enables us to compute the p-value by Monte Carlo integration
with random numbers generated from independent normal and chi-squared
distributions.
Johnson and Weerahandi (1988) discussed various methods of computing

the probabilities associated with this type of random variables to be exact
to any desired level of accuracy. Therefore, the procedures mentioned by
Johnson and Weerahandi (1988) could be used for computing the general-
ized p-value also. However, the expression given by Johnson and Weerahandi
(1988) involves an in�nite series, although it reduces to a �nite summation
when limited accuracy is required, as always the case in numerical compu-
tations. Gamage, Mathew, and Weerahandi (2004) developed an expression
to compute the generalized p-value involving the distributions of only a �nite
number of univariate random variables. To present their expression, �rst note
that

v1
n1 � 1

+
v2

n2 � 1
= Ip:

Hence,
v2 = (n2 � 1)(Ip �

v1
n1 � 1

)

and T de�ned by (6.27) can be expressed as

T =
1

Q1
Z0v1Z+

n2 � 1
Q2

Z0(Ip �
v1

n1 � 1
)Z: (6.28)

This representation of T allows us to use the diagonalization matrices of v1
to diagonalize v2 as well. Hence the test variable can be expressed as

T (v) =
1

Q1

pX
i=1

�iZ
2
i +

n2 � 1
Q2

pX
i=1

(1� �i
n1 � 1

)Z2i , (6.29)

where �i; i = 1; 2; :::; p: In (6.29), each Z2i , i = 1; 2; :::; p; have a chi-squared
distributions with 1 degree of freedom, under H0, and Q1, Q2, and the Z2i �s
are all independently distributed. Thus, the representation (6.29) could be
used in computing the generalized p-value in (6.13) by exact integration or by
simulation.

Example 6.2. Comparison of two diet plans (continued)

Consider again the data set in Table 6.1. In Example 6.1 we compared the two
diet plans under the assumption that the two covariance matrices are equal.
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The sample covariance matrices given by the transformed data in Table 6.2
was

V1 =

�
28:36 22:04
22:04 19:36

�
and V2 =

�
42:31 37:24
37:24 36:24

�
.

According to the above sample covariances the assumption made by the
Hotelling�s T 2 test is not very reasonable. In any case, with the above re-
sults we can carry out the test without relying on an additional assumption.
The generalized p-value given by (6.13) is p = 0:031. Hence, we come to the
same conclusion as before that the mean reduction in weights due to the two
diet plans are signi�cantly di¤erent.

6.3.3 Generalized Con�dence Regions

Generalized con�dence regions for � = �1 � �2 is easily deduced from the
formula (6.13) on the generalized p-value or could be obtained from the same
T (v) on which p-value was based on, when the Z random vector is re�ned as

Z =(�1 + �2)
�1=2g(s)�1=2(Y1 �Y2��)�N(0; Ip). (6.30)

It is easily seen that T (v) = Z0(v1=21 R�1
1 v

1=2
1 +v

1=2
2 R�1

2 v
1=2
2 )Z is a generalized

pivotal quantity that is free of unknown parameters and that its observed value
is

t = (y1 � y2 � �)
0
g(s)�1(y1 � y2 � �). (6.31)

Now it is evident that the 100% con�dence ellipsoid of � = �1 ��2 is given
by

(y1 � y2 � �)0g(s)�1(y1 � y2 � �) �FT (), (6.32)

where FT () is the th percentile of the distribution of T (v). Unlike other
solutions in the literature, on one hand the generalized con�dence region given
by (6.32) has the advantage that it is numerically equivalent to the Bayesian
con�dence region given by Johnson and Weerahandi (1988), under the usual
noninformative prior. On the other hand unlike the Bayesian solution, the
generalized p-value easily extends to the case of more than two multivariate
normal populations, a task that we will undertake in the following section.

6.3.4 Simultaneous Con�dence Intervals

Simultaneous con�dence intervals or tests for individual components of � or
any other linear function can be deduced from the fact that

a0(Y1 �Y2��) � N(0;a0(
�1
n1

+
�2
n2
)a). (6.33)
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In this case we can de�ne a test variable as

T = a0(Y1 �Y2��)

0@a0(v1=21 R�1
1 v

1=2
1

n1
+

v
1=2
2 R�1

2 v
1=2
2

n2
)a

a0(�1

n1
+ �2

n2
)a

1A1=2

(6.34)

= Z

s
a0(
v
1=2
1 R�1

1 v
1=2
1

n1
+
v
1=2
2 R�1

2 v
1=2
2

n2
)a (6.35)

= Z

r
a0(

v1
n1Q1

+
v2
n2Q2

)a; (6.36)

where Z � N(0; 1), Qi � �2ni�p; and, Ri is rede�ned as

Ri = (v
�1=2
i �iv

�1=2
i )�1=2(v

�1=2
i Viv

�1=2
i )(v

�1=2
i �iv

�1=2
i )�1=2

� Wp(ni � 1; Ip); i = 1; 2:

From the representation (6.35) it is evident that the distribution T is free of
unknown parameters, and from (6.34) it is clear that the observed value of T
is a0(y1�y2��). Hence, the two-sided 100% con�dence intervals of � = a0�
are of the form

a0(y1 � y2)� k(v), (6.37)

where k(v) is the [(1+)=2]th quantile of the distribution of T . If simultane-
ous intervals are to be carried out, then formula (6.37) should be applied with
the Bonferroni adjustment to � = 1� , as we did in the previous section.

6.4 MANOVA WITH EQUAL COVARIANCES

Next consider the case where we have data from a number of multivariate
populations of dimension p. Let Yi1; � � � ;Yini be a sample of p� 1 vector of
responses from Population i; i = 1; : : : ; I. Continuing with the normal theory
we assume that

Yij � Np(�i;�); i = 1; : : : ; I; j = 1; : : : ; ni. (6.38)

Table 6.3 presents an example of a typical data set as discussed by Seber
(1984). The last raw of the table shows the sample means of each column of
data.

As in the previous section, the obvious unbiased estimate of the mean vector
�i is the sample mean vector Yi =

P
Yij=ni. These means are presented in

the last raw of Table 6.3. As will become clear later, the unbiased estimate
of the common covariance matrix � is the pooled sample covariance matrix

V =
E

N � I , where E =
IX
i=1

niX
j=1

(Yij �Yi)(Yij �Yi)
0 (6.39)
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Table 6.3 Logarithm of measurements on anteater skulls at 3 localities

Minas Graes, Brazil Matto Grosso, Brazil Sanra Cruz, Bolivia
y1 y2 y3 y1 y2 y3 y1 y2 y3

2.068 2.070 1.580 2.045 2.054 1.580 2.093 2.098 1.653
2.068 2.074 1.602 2.076 2.088 1.602 2.100 2.106 1.623
2.090 2.090 1.613 2.090 2.093 1.643 2.104 2.101 1.653
2.097 2.093 1.613 2.111 2.114 1.643
2.117 2.125 1.663
2.140 2.146 1.681

2.097 2.100 1.625 2.080 2.87 1.617 2.099 2.102 1.643

is the within-population sum of cross products and N =
P
ni. For the data

in Table 6.3 concerning 3 populations, the pooled sample covariance matrix
is

V=

0@ 0:000634 0:000624 0:000762
0:000624 0:000635 0:000761
0:000762 0:000761 0:001097

1A :
An important and basic problem of interest in many applications involving

a number multivariate populations is whether the population means are the
same or not; i.e., testing of the null hypothesis

H0 : �1 = �2 � � � = �I . (6.40)

It is important that one �rst compares the equality of all mean vectors even
if the ultimate goal is to identify a certain population with most desirable
characteristics that the mean vector represent. If the hypothesis is rejected,
we can then proceed to perform pairwise comparisons as well as inferences
concerning individual populations with less concern about the Type I error.
The model can also be written as

Yij = �i + �ij , where �ij � Np(0;�). (6.41)

De�ne ni � p matrix of data from ith population as

Yi=

0BBB@
Y0
i1

Y0
i2
...

Y0
ini

1CCCA :
Then, piling all dependent variables into a single N � p matrix Y, the model
can be expressed as a multivariate regression model as

Y = XB+ ", (6.42)
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where

Y =

0BBB@
Y1

Y2

...
Y0
I

1CCCA , X =

0BBB@
1n1 0n1 : : : 0n1
0n2 1n2 : : : 0n2
...

...
...

...
0nI 0nI : : : 1nI

1CCCA , and B =

0BBB@
�01
�02
...
�0I

1CCCA
is an I � p matrix of parameters formed by the mean vectors of interest. The
MLE of B with a general design matrixX is bB= (X0

X)
�1
X0Y and it reduces

to a matrix of sample means in the above case. It can also be shown that
the MLE of � is b�= Q=N, where Q = Y0(IN�X(X

0
X)

�1
X0)�1Y, which

reduces to E under the model (6.38). For details and derivations of these
and the distributional results given below, the reader is referred to Muirhead
(1982), Seber (1984), and Anderson (1984).
Notice that the hypothesis of equal population means can be expressed in

the form

H0 : CB = 0, (6.43)

where

C =

0BBBBB@
1 �1 0 : : : 0
0 1 �1 : : : 0
0 0 1 : : : 0
...

...
... : : :

...
0 0 0 : : : �1

1CCCCCA (6.44)

is an (I � 1)� I matrix. In fact, we can use appropriately de�ned C matrix
to test various hypotheses involving all or some of the mean vectors.

6.4.1 Multiple comparisons

The above representation is especially useful in follow up multiple comparisons
after testing the equality of all mean vectors. With that representation, the
distributional results follow from those available for general linear models.
In fact, hypotheses involving even individual elements of mean vectors could
be handled by considering more general hypotheses involving double linear
combinations of the form

H0 : CBD = 0, (6.45)

and a general design matrix X as well, where C is a c�I matrix of rank c � I,
and D is a p � d matrix of rank d � p, formed by a number of comparisons
of interest. For example, to test the hypothesis that the �rst coe¢ cient of
each of the I populations is identical, we choose the C matrix as in (6.44) and
de�ne D =

�
1 0 � � � 0

�0
as a p� 1 vector. To compare only the �rst two

populations we set, C =
�
1 �1 0 : : : 0

�
.
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In the general case, the null hypothesis in (6.45) can be tested based on
the distributions given by

E = D0QD � Wd(e;D
0�D); (6.46)

H = (CbBD)0(C(X0
X)

�1
C0)�1(CbBD) � Wd(h;D

0�D), (6.47)

which are valid under H0, where e = N � I; h = c. If the null hypothe-
sis is not true, the random matrix H has a noncentral Wishart distribution
with noncentrality parameter matrix 	 = (CBD)0(C(X0

X)
�1
C0)�1(CBD).

These results and (6.45) allow us to test not only the hypotheses concerning
mean vectors but also those involving components of individual mean vectors.
In testing the particular hypothesis (6.40) of equality of mean vectors, the
matrices E and H reduce to the multivariate extension of the within popu-
lation and between population sums of cross products given by the ANOVA
table shown below.

Table 6.4 Multivariate ANOVA

Source Matrix DF

Between populations H =
IP
i=1

ni(Yi �Y)(Yi �Y)0 I � 1

Within populations (error) E =
IP
i=1

niP
j=1

(Yij �Yi)(Yij �Yi)
0 N � I

In testing the equality of mean vectors of the populations, the distributions
of E and H also reduce to

E �Wp(N � I;�); (6.48)

H �Wp(I � 1;�). (6.49)

The literature [cf. Seber (1984)] on multivariate analysis provides multiple
procedures for testing (6.45) based on the ordered eigenvalues of the matrix
HE�1, say e1; e1; : : : ; eh. This is because, unlike the two population problem,
there is no uniformly most powerful test in the multivariate case. Some widely
used tests are the Wilks likelihood ratio test with the test statistic

TW =
hY
k=1

1

1 + ek
=

jEj
jE+Hj =

1

jId+HE�1j
, (6.50)

Roy�s largest root test TR = e1, Lawley�Hotelling�s test TLH =
P
ek, and

the Bartlett�Nanda�Pillai test TBNP =
P
ek=(1 + ek). There is no clear
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winner among these tests in terms of the power of tests. The p-value of any
of these tests can be computed by simulating the distributions using standard
normal random variates. As far as the exact distributions of the test statistics
are concerned, only the likelihood ratio test is tractable for any number of
populations being compared. In general, the likelihood ratio test has a U
distribution with d; h; and e degrees of freedom,

TW = U� Ud;h;e.

The p-value for testing the null hypotheses of the form (6.45) in general and
the hypothesis (6.40) of particular interest can be computed as

p = Pr(TW � tW ) = FU (tW ), (6.51)

where FU is the cdf of the U distribution with d; h and e degrees of freedom,
and tW is the observed value of the Wilks statistic. Asymptotically the sta-
tistic, �(e � (d � h + 1)=2) log(TW ) has a chi-squared distribution with dh
degrees of freedom. Although this approximation is very good in computing
some critical values, in this computer age there is no real need to resort to
such asymptotic results, especially in computing p-values regardless of the
observed value of the statistic. The probabilities of the U distribution can be
evaluated by means of alternative methods given in the last section of Chapter
5. In particular, when the d or h parameter is less than 3, its distribution
can be transformed into an F distribution. When d is large, perhaps the best
way to compute the p-value is to generate a large number of random numbers
from each of the independent beta distributions and computing the fraction
of times that the inequality appearing in (6.51) is satis�ed.
To illustrate the importance of the above results, suppose, for instance,

we are interested in comparing only the �rst two populations. In this case,
C =

�
1 �1 0 : : : 0

�
and D = Ip so that c = 1 and d = p. Moreover,

h = c = 1 and H = (1=n1+1=n2)
�1(Y1�Y2)(Y1�Y2)

0 is of rank 1. Hence,
U = 1=(1+tr(HE�1) and in turn

F =
1� U
U

e+ 1� p
p

(6.52)

= tr(HE�1)
N � p� I + 1

p

� Fp;N�p�I+1.

Using the properties of the trace operator, we get

tr(HE�1) =
n1n2
n1 + n2

(Y1 �Y2)
0E�1(Y1 �Y2). (6.53)

Now it is evident that the F -statistic given by (6.52) is the same as the one
used in the two population problem, (6.5) except that now we are using data
from all I populations to estimate the covariance matrix. As a result, the
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second degrees of freedom of the F distribution is now N�p�I+1 instead of
n1+n2� p� 1. Furthermore, the two F -statistics and the degrees of freedom
are identical when I = 2.

Example 6.3. Comparison of anteater skulls (continued)

Consider the data in Table 6.3 concerning three populations. The observed
matrices of between populations and within population sums of cross products
are

H =

0@ 0:000806 0:000623 0:000750
0:000623 0:000482 0:000586
0:000750 0:000586 0:001184

1A
and

E =

0@ 0:006342 0:006241 0:007615
0:006241 0:006352 0:007613
0:007615 0:007613 0:010967

1A
with degrees of freedom h = 2 and e = 10, respectively. The likelihood ratio
computed using is TW = U = jEj=jE+Hj = 0.601437. In comparing the
three populations we can transform the U -statistic into the F -statistic

F =
1� U1=2
U1=2

8

3
� F6;16.

The observed value of the F -statistic is 0.7719. Hence, the p-value for testing
the equality of three population mean vectors is 0.6032. Therefore, we can
conclude that there is no signi�cant di¤erence in the three population mean
vectors.

6.4.2 Simultaneous con�dence regions

A particular case of (6.47) is that

E = Nb� � Wp(N � I;�)
H = (bB�B)0(X0

X)(bB�B) � Wp(I;�),

where b� = Y0(IN �X(X
0
X)

�1
X0)�1Y=N is the MLE of �. Con�dence

regions for the matrix of all means, B, follow immediately from this result.
As we discussed in Chapter 5, the joint 100% con�dence region for B can be
found as

fB j jIp +
1

N
(bB�B)0(X0

X)(bB�B)b��1j � �g, (6.54)

where � is the (1� )th quantile of the U distribution with p; I; and N � I
degrees of freedom. 100% con�dence regions for any desired contrast matrix

� = CBD
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of dimension c�d can be similarly constructed using the general form of (6.47)
as

f� j jIp + (b���)0((C(X0
X)

�1
C0)�1)(b���)E�1j � �g, (6.55)

where E = D0Y0(IN �X(X
0
X)

�1
X0)�1YD; and � is the (1� )th quantile

of the U distribution with d; h; and e degrees of freedom.
Of particular interest is the problem of constructing simultaneous con�-

dence intervals of linear combinations of means. If comparisons of a certain
component of each of the populations had been planned, then we set d = 1
in (6.55) so that it reduces to a Sche¤e-type con�dence interval based on the
F -statistic. If there were r pre-planned linear combination of interest of the
form �i = a

0
i�bi, then Bonferroni-type intervals can be constructed using the

distributional results

b�i = a0i b�bi� N(�i; (a0iC(X0
X)

�1
C0ai)(b

0
iD

0�Dbi))

and
b0iEbi

b0iD
0�Dbi

� �2N�I ,

which lead to a t-statistic. The 100% simultaneous con�dence intervals con-
structed in this manner for �i; i = 1; : : : ; r are

b�i � t�(1� �

2r
)
�vab
e

�1=2
, i = 1; 2; : : : ; r, (6.56)

where vab = (a0iC(X
0
X)

�1
C0ai)(b

0
iEbi) and � = 1 � . In constructing

con�dence intervals for linear combinations directly based on the matrix of
means B as de�ned in (6.42), b�i = a0i bBbi and vab = (P a2ij=nj)(b

0
iEbi) with

E appearing in the MANOVA table.
Based on the maximum root criterion, Roy and Bose (1966) derived simul-

taneous con�dence intervals to be valid for any number of linear combinations.
The 100% con�dence bounds for �ab given by the maximum root method is

b�ab � � k�
1� k�

(a
0
C(X

0
X)

�1
C0a)(b

0
Eb)

�1=2
; (6.57)

where b�ab = a0�b, k� is the (1 � �)th percentile of the largest root test
statistic TR = e1 with degrees of freedom c; d; and e. In particular, for the
model (6.42) with C = I we have

a0C(X
0
X)

�1
C0a =

X
a2j=nj .

The con�dence level remains valid for any number of intervals that can be
deduced from �. In two important special cases, namely when c = 1 or
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d = 1, �� can be obtained from the F distribution. This is, for instance,
the case if we had planned comparing only the parameters of two particular
populations only so that c = h = 1. Similarly, if all pairwise comparisons
of only one component of the mean vectors had been planned, we can set
d = 1. In these cases, a counterpart based on the U -statistic also leads to an
F -statistic,

F =
e1
h1

1� U
U

=
e1
h1

(b�ab)2(aC(X0
X)

�1
C0a)

�1

b0Eb
� Fh1;e1

and the 100% con�dence interval

b�ab � � �h1
e1
(a
0
C(X

0
X)

�1
C0a)(b

0
Eb)

�1=2
; (6.58)

where � is the (1�)th quantile of the F distribution with h1 and e1 degrees
of freedom and

h1 = h and e1 = e if d = 1

h1 = d and e1 = e+ 1� d if h = 1:

These intervals tend to be longer than the Bonferroni intervals unless r is
large, but remains valid regardless of the number of linear combinations of
interest.

Example 6.4. Comparison of anteater skulls (continued)

Consider again the data in Table 6.3. Suppose we are interested in comparing
two populations. Ninety-�ve percent simultaneous con�dence intervals for
the di¤erences in individual means of the populations could be obtained by
applying (6.55) and (6.56) for the two populations are shown in the following
table. The former is valid for one coe¢ cient and for any two of the three
populations and the latter applied with r = 3 is valid for all three coe¢ cients
for the �rst two populations. To ensure the con�dence level for any number
of intervals, we can employ (6.57). In this case, the con�dence intervals of
particular interest, say those for the �rst two populations, will be much wider
than those reported below. As expected, even these less conservative intervals
contain 0, thus providing no evidence to support that there is signi�cant
di¤erence in any means.

Sche¤e Intervals Bonferroni Intervals
Mean Lower Bound Upper Bound Lower Bound Upper Bound

�11 � �21 -0.04731 0.07965 -0.03286 0.06519
�12 � �22 -0.05111 0.07595 -0.03665 0.06148
�13 � �23 -0.07514 0.09181 -0.05613 0.07280
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6.5 MANOVA WITH UNEQUAL COVARIANCES

In this section we drop the assumption of equal covariances and consider the
problem of testing the equality of population means under the distributional
assumption,

Yij � Np(�i;�i); i = 1; : : : ; I; j = 1; : : : ; ni. (6.59)

The model can also be written as

Yij = �+ �i + �ij , where �ij � Np(0;�i) (6.60)

so that the null hypothesis can be expressed as

H0 : �1 = �2 � � � = �I = 0. (6.61)

This problem can be tackled by taking a modi�ed approach that we took
to solve the multivariate Behrens�Fisher problem so as to handle issues in
MANOVA. There are multiple solutions to the problem, as was the case even
with equal covariances, and here we present a particular class of solutions. As
in the previous section, consider the transformed data Xij = g(s)

�1=2Yij �
Np(�;ni�i), where � = g(s)�1=2�, g(s) is any appropriate positive de�nite
data matrix such as

g(s) =
s1
n1
+
s2
n2
+ � � �+ sI

nI

or the identity matrix Ip, and

�i = g(s)
�1=2�i

ni
g(s)�1=2; i = 1; 2 : : : ; I.

As in the case of the two sample problem, testing of the hypothesis (6.61) can
be based on independent random variables

Xi � N(�;�i); under H0 (6.62)

and

Ri = (v
�1=2
i �iv

�1=2
i )�1=2(v

�1=2
i Viv

�1=2
i )(v

�1=2
i �iv

�1=2
i )�1=2

� Wp(ni � 1; Ip), (6.63)

where

Vi = (ni � 1)g(s)�1=2
Si
ni
g(s)�1=2 �Wp(ni � 1;�i):

To establish a class of testing procedures, consider the decomposition

Zi = �
�1=2
i (Xi � �)

= �
�1=2
i (Xi � b�) +��1=2i (b� � �); (6.64)
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where Zi � N(0; I) and b� is the estimate (MLE when �i has been speci�ed)
of the common mean vector �, namely

b�= eX =

 
IX
i=1

��1i

!�1 IX
i=1

��1i Xi

!
.

Since �i are parameters that can be tackled by means of Ri having the
observed value v1=2i ��1i v

1=2
i ; it now follows from (6.64) that

Ti = Wi(�)(Xi � eX)
= Wi�

1=2
i Z

i
�Wi

 
IX
i=1

��1i

!�1 IX
i=1

�
�1=2
i Zi; (6.65)

i = 1; 2; : : : ; I is a set of random quantities with known distributions that
we can exploit to derive testing procedures, where Wi =Wi(�) is a weight
function of covariance matrices to be chosen appropriately to attain certain
desirable properties. Two weight functions leading to solutions that reduce
to familiar solutions in the univariate case and in the I = 2 case are

Wi(�) = �
�1=2
i andWi(�) =

 
IX
i=1

�i

!
��1i :

Certain functions of Ti even have distributions free of �i. For example, as
discussed by Gamage, Mathew, and Weerahandi (2004), if the weights are
chosen asWi(�) = �

�1=2
i , then the random variable de�ned by

eH1(X;�1; : : : ;�I) =
IX
i=1

T0iTi =
IX
i=1

(Xi � eX)0��1i (Xi � eX) (6.66)

has a chi-squared distribution with p(I � 1) degrees of freedom. This cor-
responds to the Lawley-Hotelling�s test in the equal covariances case. The
extreme region and the p-value based on eH1 is easily obtained as

p = Pr( eH1 � eH1(x;v
1=2
1 R�1

1 v
1=2
1 ; : : : ;v

1=2
I R�1

I v
1=2
I ))

= 1� EF�( eH1(x;v
1=2
1 R�1

1 v
1=2
1 ; : : : ;v

1=2
I R�1

I v
1=2
I ); (6.67)

where F� is the cdf of chi-squared distribution with p(I�1) degrees of freedom
and the expectation is taken with respect to the Wishart random variables
Ri�s. On the other hand, the choice of weights

Wi(�) =

 
IX
i=1

�i

!
��1i

provides a solution that reduces to the test given by (6.22) in the two-sample
case (see Appendix B.1). Construction of the test variable and computation
of p-value with any general set of weightsWi(�) and any I is described below
in a more general setting.



192 MULTIVARIATE ANALYSIS OF VARIANCE

6.5.1 Generalized Wilks test

To establish a general procedure for computing the generalized p-value for
any of the counter parts of MANOVA solutions, including the Wilks test of
special interest, consider the standardized between population sum of cross
products with any weight function,

eH(X;�1; : : : ;�I) =
IX
i=1

TiT
0
i

=
IX
i=1

Wi (Xi � eX)(Xi � eX)0Wi

= H(Z1(�1); : : : ;ZI(�I);�1; : : : ;�I); (6.68)

In view of the form of classical MANOVA results, we can de�ne the potential
test variable to be based on eigenvalues of the matrices

T = H(Z1(�1); : : : ;ZI(�I);v
1=2
1 R�1

1 v
1=2
1 ; : : : ;v

1=2
I R�1

I v
1=2
I )

and
t = eH(x;v1=21 R�1

1 v
1=2
1 ; : : : ;v

1=2
I R�1

I v
1=2
I );

where x is the observed value of X. Observe that the distribution of any test
variable based on these matrices is free of unknown parameters, and at the ob-
served sample point the two matrices become equal because (v1=2i R�1

i v
1=2
i )obs =

�i. Moreover, the eigenvalues of T tends to take greater values for greater
deviations from the null hypothesis. Hence we could employ (T; t) to de�ne
test variables. This means that any test variable based on (T; t) can de�ne
extreme regions with computable probabilities and having observed sample
point on its boundary. As discussed in the previous section, we can develop
any counterpart of the classical testing procedures by taking the corresponding
function of the eigenvalues of these matrices.
Of particular interest is the generalized Wilks test based on the p-value

p = Pr(jIp +Tj � jIp + tj)
= Pr(jIp+H(Z1(�1); : : : ;ZI(�I);v1=21 R�1

1 v
1=2
1 ; : : : ;v

1=2
I R�1

I v
1=2
I )j

� jIp + eH(x;v1=21 R�1
1 v

1=2
1 ; : : : ;v

1=2
I R�1

I v
1=2
I )j) . (6.69)

The literature on MANOVA does not yet provide an expression for (6.69) in
terms of univariate random variables. This is an area requiring further re-
search. Nevertheless, in its current representation, this p-value or that of any
other test criterion based on eigenvalues of T can be computed by simulat-
ing univariate standard normal random variables. This is accomplished by
simulating the Wishart random matrices using independent standard normal
random variates and the following result:

If Zj �N(0; Ip), j = 1; 2; : : : ; J , then
X

ZjZ
0
j �Wp(J; Ip). (6.70)
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The simulation is then carried out in the following steps:

1. Generate a large sample of random numbers from Zi = �
�1=2
i (Xi � �) �

N(0; I) based on sets of independent standard normal random numbers.

2. Generate a large sample from each of the distributions of Ri � Wp(ni �
1; Ip) based on sets of independent standard normal random numbers.

3. For each set of simulated samples from Ri; i = 1; 2; : : : ; I, replace �i by
the simulated value of v1=2i R�1

i v
1=2
i , and compute

eH = Hs(x;�1; : : : ;�I) =
IX
i=1

�
�1=2
i (xi � ex)(xi � ex)0��1=2i ;

where xi = g(s)�1=2yi is computed using the actual data.

4. For each set of simulated samples from Ri;Zi; i = 1; 2; : : : ; I, replace �i
by the simulated value of v1=2i R�1

i v
1=2
i , and compute

Ti = Zi ���1=2i

 
IX
i=1

��1i

!�1 IX
i=1

�
�1=2
i Zi; i = 1; 2; : : : ; I

and then compute H =
IP
i=1

TiT
0
i ,

5. Using independent sets of simulated samples generated from eH and H,
compute the fraction of pairs, bP , for which Pr(jIp+Hj � jIp+ eHj).
6. Estimate the p-value by bP .
Multiple comparisons can be carried out by taking an approach similar

to one taken in the previous section. Simultaneous tests and con�dence in-
tervals for desired di¤erences in mean vectors are obtained by applying the
solutions to the multivariate Behrens�Fisher problem developed above with
the Bonferroni adjustment.
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Exercises

6.1 Consider the two multivariate populations problem with equal covari-
ance matrices,

Y1j � Np(�1;�), j = 1; 2; � � � ;m
Y2j � Np(�2;�), j = 1; 2; � � � ; n . (6.71)

Show that Y1 and Y2 are the MLEs of population means and that the pooled
sample covariance matrix given by

V=
1

m+ n

mX
j=1

(Y1j �Y1)(Y1j �Y1)
0
+

nX
j=1

(Y2j �Y2)(Y2j �Y2)
0

is the MLE of the common covariance matrix. Show that all three estimates
are independently distributed.

6.2 Consider model (6.38) and hypotheses of the form (6.45). Write down
the form of C and D matrices if

(a) only populations 2 and 3 are to be compared with data from all popula-
tions,
(b) the hypothesis that all populations have the �rst coe¢ cient in common,
(c) the hypothesis that the di¤erence in the �rst coe¢ cients of populations 2
and 3 is to be tested.

6.3 In the previous exercise, write down the particular formulae

(a) for computing p-values for each of the hypotheses,
(b) for constructing con�dence regions for each quantity of interest.

6.4 Let Xij � Np(�;�i); i = 1; : : : ; I; j = 1; � � � ; ni be a random sample
from I multivariate populations. If covariance matrices were known, show
that

eX =

 
IX
i=1

��1i

!�1 IX
i=1

��1i Xi

!
is the MLE of the mean vector � and that it is unbiased.

6.5 Consider again the normal random sample in Exercise 6.4. Derive the
MLE of �i and its unbiased counterpart. Hence �nd the MLE � of when the
covariances are unknown.

6.6 Consider the problem of multiple comparisons based on the data

Yij � Np(�i;�i); i = 1; : : : ; I; j = 1; : : : ; ni.

Consider the problem of testing a general hypothesis involving double linear
combinations of the form

H0 : CBD = 0,
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where C is a c � I matrix of rank c � I, and D is a p � d matrix of rank
d � p. By taking the generalized approach or otherwise, establish procedures
for testing H0. Construct the form of con�dence intervals for the parameter
� = a0�b, where � = CBD, a is a c� 1 vector of constant, and b is a d� 1
vector of constants.

6.7 Consider the data in Table 6.2.

(a) Use formulae (6.56) and (6.57) to construct 95% simultaneous intervals
to be valid for all pairwise di¤erences �ik � �jk, k = 1; 2; 3 of any two of the
three populations.
(b) Construct 90% con�dence ellipsoid for the di¤erence in mean vectors of
the �rst two populations.

6.8 Consider again the data in Table 6.3. Perform the following analyses
without the assumption of equal covariance matrices.

(a). Compute the generalized p-value for testing equality of mean vectors of
�rst the two populations.
(b). Construct 95% simultaneous con�dence intervals for each of the di¤er-
ences in coe¢ cients of the �rst two populations.

6.9 Consider again the data in Table 6.3. Compute the generalized p-value
for testing the equality of all three mean vectors by applying (i) the generalized
Lawley�Hotelling test, (ii) the generalized Wilks test.





CHAPTER 7

MIXED MODELS IN REPEATED
MEASURES

7.1 INTRODUCTION

The terminology repeated measures or repeated measurements, is used to refer
to data from one or more response variables, which are observed on multi-
ple occasions.. The response variables for each experimental unit or subject
are observed over time under the same or di¤erent experimental conditions.
There are many real-world situations where studies are conducted for a period
of time and certain measurements on the experimental subjects are taken at
regular or irregular time periods. Experimental designs involving repeated
measures are heavily used in clinical trials for evaluating the e¢ cacy and
long-term side e¤ects of experimental drugs. In fact, applications of repeated
measures methods can be encountered in a wide variety of �elds, including
biomedical research, health and life sciences, econometrics, environmetrics,
industrial experiments, marketing studies, education, sociology, and psychol-
ogy. The response variable that we track in such applications can range from
blood pressure of a patient to the time that a worker takes to complete a
certain routine job.

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c 2013 John Wiley & Sons, Inc.
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Applications involving repeated measures could have one or more groups
of subjects or experimental units. Most experiments in biomedical research
involve a number of groups of subjects receiving di¤erent treatments and the
subjects are observed periodically under the same or di¤erent conditions. The
di¤erence in experimental conditions over time might be merely due to certain
uncontrolled conditions or designed experimental conditions such as the level
of a factor (e.g., dose level) that is being changed from one occasion to another.
From now on, for the sake of simplicity, we refer to the experimental units as
subjects, regardless of the situation.
As far as the analysis of repeated measures is concerned, one special fea-

ture we need to take into account is that observations taken from a group of
subjects are not independent over time as they consist of observations from
the same subjects taken at di¤erent occasions. However, typically the obser-
vations from di¤erent subjects are independent of one another. Moreover, the
dependence of data over time can be modeled with a few parameters. If this
is not the case, we can simply analyze the data using MANOVA models with
unstructured covariance matrices. Although the MANOVA approach has the
advantage of milder assumptions being made, its major drawback is that the
MANOVA inference procedures tend to be less e¢ cient due to large number
of unknown parameters in the unstructured covariance matrix.
In this chapter, we will study some simple models that have these features

and develop procedures for making inferences concerning the underlying fac-
tors. The additional assumptions we make in the current setting will lead to
structured covariance matrices with few unknown parameters and are reason-
able and appropriate for applications involving repeated measurements. In
this book, in addition to the variance components representing such factors
as within and among subjects variations, we consider only models involving
one or two factors with �xed e¤ects. For problems and solutions involving
more than two factors, the reader is referred to Vonesh and Chinchilli (1997).
There are two types of factors that we need to distinguish in analyzing

repeated measurements. They are referred to as within-subject and among-
subjects e¤ects. The former includes within-subject covariates that may vary
over time, time-dependent covariates, and factors that were changed during
the course of the experiment, whereas the latter includes treatment groups,
and among-subjects covariates such as subjects�gender and race that do not
change over time.

7.2 MIXED MODELS FOR ONE GROUP

First consider the simplest possible situation in which we have just one group
of subjects over time and there is only one factor, whose levels might be
di¤erent over time. The levels of the factor might be the time itself or some
dose levels of a treatment confounded with the time e¤ects. Table 7.1 shows
an example of a typical data set involving one group. In this data set reported
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by Timm (1980), each of a group of 11 subjects were given 5 probe words at
di¤erent occasions and subjects mean reaction times were measured.

Table 7.1 Reaction times to probe words

Subject P1 P2 P3 P4 P5

1 51 36 50 35 42
2 27 20 26 17 27
3 37 22 41 37 30
4 42 36 32 34 27
5 27 18 33 14 29
6 43 32 43 35 40
7 41 22 36 25 38
8 38 21 31 20 16
9 36 23 27 25 28
10 26 31 31 32 36
11 29 20 25 26 25

Means: 36.1 25.6 34.1 27.3 30.7

Consider a T � 1 vector Y of responses or observations at T di¤erent oc-
casions. Let Yi= (Yi1; Yi2; : : : ; YiT ) be the vector of observations taken from
the ith subject. Suppose we have a sample of I subjects taken from a cer-
tain population. For the data set in Table 7.1, T = 5 and I = 11. It is not
necessary that the subjects are observed at regular time intervals, but it is
assumed that each subject is observed at each of the T time points. We as-
sume that the observations of di¤erent subjects are independently distributed
and that we have a complete data set from all subjects in the group. The
observations at di¤erent occasions are usually dependent. Let � be the T �T
matrix of covariances of Y. If T = 2, then the problem reduces to the classical
paired data problem and the signi�cance of the di¤erence in means of the two
data columns can be tested by applying the paired t-test. If the covariance
matrix � has no special structure, then the data can be analyzed using the
multivariate methods that we studied in Chapter 6. That approach, however,
will introduce too many unknown parameters into the inference problem thus
making its testing procedures less e¢ cient than they need to be. The point is
that, in dealing with repeated measures, it is possible to derive the structure
of the covariance matrix by making certain reasonable assumptions. Here we
con�ne our attention to a widely used class of structured covariance matrices
that can be derived by a simple mixed model.
To be speci�c, assume the mixed model

Yit = �i+�t + �it, (7.1)
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where �i is the random e¤ect due to subject i, �t, t = 1; : : : ; T are �xed e¤ects
due to occasions/treatments, and �it are the residual terms. Assume that

�i � N(0; �2�), �it � N(0; �2) (7.2)

for all t = 1; : : : ; T ; i = 1; : : : ; I; and that they are all independently dis-
tributed, where �2� and �

2 are the variance components of the mixed model.
Notice that this is similar to the one-way random e¤ects model except that
now we have a number of �xed e¤ects to deal with. It is easily seen from the
model (7.1) that Var(Yit) = �2� + �

2 and that Cov(Yit; Yit0) = �2�, and hence

Yi � NT (�;�) (7.3)

where � = (�1; : : : ; �T ) and the covariance matrix � has the special structure,
namely the compound symmetric structure

� = �2�1T1
0

T + �
2IT , (7.4)

where 1T is a T � 1 vector of 1�s. When the covariance matrix has such
special structure, it is more convenient to derive testing procedures directly
from (7.1).

7.2.1 Analysis of Variance

De�ne various sample means that could play a role in the analysis as

Y i =
1

T

TX
t=1

Yit for i = 1; : : : ; I;

Y t =
1

I

IX
i=1

Yit for t = 1; : : : ; T;

and denote by Y the grand sample mean of all the data. An analysis of
variance table providing a basis for making inferences on model (7.1) can be
obtained by decomposing the total sum of squares as

ST = SA + SB + SE , (7.5)

which is obtained by squaring and summing the identity

Yit � Y = (Y i � Y ) + (Y t � Y ) + (Yit � Y i � Y t + Y ),

where

SA = T
X
(Y i � Y )2, (7.6)

SB = I
X
(Y t � Y )2, (7.7)
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and
SE =

XX
(Yit � Y i � Y t + Y )2. (7.8)

Table 7.2 provides the details of the resulting ANOVA including the degrees
of freedom of the above sums of squares and the expected values of the mean
sums of squares, MS = SS=DF .

Table 7.2 One factor ANOVA

Source DF SS E(MS)

Subjects I � 1 SA T�2� + �
2

Occasions T � 1 SB I
P
(�t � �)2=(T � 1) + �2

Error (I � 1)(T � 1) SE �2

Total IT � 1 ST

Inferences concerning parameters of model (7.1) can now be carried out us-
ing the distributional results that the ANOVA Table 7.2 imply. First consider
the problem of testing the equality of occasion means,

H0 : �1 = �2 = � � � = �T . (7.9)

Under H0, we have
SB
�2

� �2T�1 (7.10)

and regardless of whether or not the null hypothesis is true, we have

SE
�2

� �2(I�1)(T�1). (7.11)

It is now evident that hypothesis (7.9) can be tested on the basis of the F -
statistic

SB=(T � 1)
SE=(I � 1)(T � 1)

� FT�1;(I�1)(T�1) (7.12)

and the resulting p-value

p = 1�HT�1;(I�1)(T�1)
�

sB=(T � 1)
sE=(I � 1)(T � 1)

�
; (7.13)

where HT�1;(I�1)(T�1) is the cdf of the F distribution with T � 1 and (I �
1)(T � 1) degrees of freedom.
Inferences about the variance components �2� and �

2 can be performed
based on (7.11) and

SA
T�2� + �

2
� �2I�1 . (7.14)
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For example, the 100% lower con�dence bound for �2� is the solution �
2
0 of

the equation

 =

1Z
sE

sA+sE

GT (I�1)

�
1

T�20
(
sA
1� b �

sE
b
)

�
fB(b) db, (7.15)

where GT (I�1) is the cdf of the chi-squared distribution with T (I � 1) de-
grees of freedom and the integration is to be performed with respect to the
beta random variable, B �Beta((I � 1)(T � 1)=2; (T � 1)=2). The XPro soft-
ware package computes the con�dence limits and p-values by exact numerical
integration. The integration can also be carried out using numerical inte-
gration procedures available from other statistical and mathematical software
packages such as SAS and SPlus. The con�dence intervals for the variance
component can also be constructed by Tukey�Williams method, preferably
with the Wang adjustment.
Inferences concerning the error variance, �2 is straightforward from (7.11).

In particular, b�2 = sE
(I � 1)(T � 1) (7.16)

is an unbiased estimate of �2.

7.2.2 Multiple comparisons

After the signi�cance of di¤erences between occasion means has been estab-
lished, we can proceed to do multiple comparisons. Of particular interest are
the pairwise comparisons. If only one such comparison had been pre-planned,
the two means can be compared by a paired t-test. To see this, consider the
problem of comparing occasion means �t and �t0 . From (7.1) we get

Yit = �i+�t + �it;

Yit0 = �i+�t0 + �it0

and so
Xi = Yit � Yit0 = � + ei i = 1; : : : ; I

forms a set of independent data from a normal population with mean � and
some constant variance, where � = �t � �t0 is the parameter of interest and
ei = �it � �it0 � N(0; 2�2) is an error term. The random variable Xi is
distributed independently of SE=�2 � �2(I�1)(T�1), becauseX

t

Xi(Yit � Y i � Y t + Y ) = 0:

Hence, inferences about � can be based on the t-statistic

t =
(X � �)b�p2=I � t(I�1)(T�1), (7.17)
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where X = Y :t � Y :t0 � N(�; 2�2=I) is the sample mean of Xi data and
S2 =

P
(Xi � X)2=(I � 1) is the sample variance. For example, the 100%

con�dence interval for � = �t � �t0 is computed using the formula

(yit � yit0)� t(I�1)(T�1)(1� �=2)b�p2=I, (7.18)

where t(I�1)(T�1)(k) is the kth quantile of the Student�s t distribution with
(I � 1)(T � 1) degrees of freedom and � = 1� . If there were r prespeci�ed
pairwise comparisons of interest, the simplest way to obtain simultaneous
con�dence intervals is to apply the Bonferroni method. Then, for the values
of t and t0 of interest we apply the formula

(yit � yit0)� t(I�1)(T�1)(1� �=2r)b�p2=I. (7.19)

As in other problems of multiple comparisons, the conservative intervals ob-
tained in this manner tend to be shorter than those given by more complicated
methods such as the Sche¤e method.

Example 7.1. Comparison of mean reaction times to probe words

Consider the data in Table 7.1. The table also provides the sample mean
reaction times, most of which seem signi�cantly di¤erent. To establish the
statistical signi�cance and to detect the ones that are di¤erent, let us carry
out the above analysis. The sums of squares and the F -values are summarized
in the following ANOVA table.

Source DF SS F -value

Subjects 10 1991 8.489
Occasions 4 868 9.248
Error 40 938

Total 54 3796

The p-value for testing the hypothesis of equal mean reaction times is p =
1 � H4;40(9:248) = 0:0 suggesting that the rejection of the null hypothesis.
Therefore, we can proceed to make pairwise comparisons. To apply formula
(7.19) to construct simultaneous 95% con�dence for all possible pairs, we set
r = 10. The estimated error standard deviation is b�e =p938=40 = 4:843 and
so, the half width of each con�dence interval is computed as

Hw = t40(:9975)4:843
p
2=11

= 2:971 � 2:065 = 6:14:

It is now evident that the di¤erences of mean reaction times to probe words
(1,2), (1,4), (2,3), and (3,4) are signi�cant at the 0.05 level. The 95% equal-
tail con�dence interval for the among-subject variance, �2�; computed using
formula (7.15) is [14.35, 117.7], with its unbiased estimate at 35.7.
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7.3 ANALYSIS OF DATA FROM TWO FACTORS

Now consider the case of a number of groups, which we refer to as treatment
groups for simplicity of terminology. The treatments represent the levels of
one factor and, as in the previous section, occasions represent another. In
addition to these factors, among-subject variation measured by a variance
component is also important. The design and the mixed model we consider in
this section is the most widely used extension of the one treated in the previous
section. In this extension, we simply have a number of groups of subjects, each
of which are to be modeled as before. There is only one measure or response
variable of importance, whose measurements are taken from each subject at
each of the occasions. Now we have the additional problem of comparing the
treatment groups and addressing the possibility that treatment groups might
have an interaction with occasions or the second factor.
Suppose there are G groups of subjects on which we have repeated mea-

sures on the response variable. Suppose there are ng subjects in group g and
let
P
ng = N be the total number of subjects used in the experiment. Each

subject is observed at T equally or unequally spaced time points. Let Yi(g)t
denote the observation taken at the tth time point from the ith subject in
group g. Table 7.4 below shows a typical data set in which G = 3 and ng
= 7 for all groups. This type of data can be analyzed by MANOVA meth-
ods in Chapter 6 if we do not make any assumptions about the structure
of the covariance matrix. That approach, however, does not take advantage
of the special covariance structures that occur due to the repeated measure-
ments taken from subjects and thus leaves too many unknown parameters. In
the other extreme, if data taken over time are nearly independent, say after
controlling the within-subject variation with some historical data from each
subject, one can simply use conventional ANOVA and regression methods to
make all kinds of inferences.
In many applications of repeated measures, however, neither of the above

two extreme solutions might be satisfactory. In such situations, by modeling
the repeated measurements appropriately we can derive models with few nui-
sance parameters. Here we discuss a particular mixed model that is widely
used and studied in the literature.
Extending model 7.1 to the case of G groups, we formulate the mixed model

Yi(g)t = �g + �t + gt + �i(g) + �i(g)t; (7.20)

for t = 1; : : : ; T ; i(g) = 1; : : : ; ng; g = 1; : : : ; G; where �i(g) is the random
e¤ect due to among-subject variation, �g, g = 1; : : : ; G are the treatment (or
factor 1) e¤ects �t, t = 1; : : : ; T are e¤ects due to occasions (or factor 2),
gt are their interactions, and �it are the residual terms. Extending the usual
assumption about variance components and assuming equal error variances,
we have

�i(g) � N(0; �2�), �i(g)t � N(0; �2); (7.21)
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for all t = 1; : : : ; T ; i(g) = 1; : : : ; ng; g = 1; : : : ; G.
In designed experiments involving comparison of treatment groups based

on repeated measures, among-subjects variation entering into the model can
be substantially minimized, if some observations are taken over time from each
subject before the treatments are administered. LetXi(g)t be the original data
from such an experiment. Suppose from each subject we have T 0 observations
taken at time points t0 = 1; : : : ; T 0 before the treatments are given and we
have T observations taken at time points t = 1; : : : ; T after the treatments
are given. Then, before we use model (7.20) we could transform the data by
an appropriate transformation such as

Yi(g)t = Xi(g)t �Xi(g); (7.22)

where

Xi(g) =

T 0P
t0=1

Xi(g)t0

T 0
:

To illustrate the importance of appropriate transformation of data before
we use model (7.20), suppose a market analyst has data from a price trial on
a consumer durable. Suppose the analyst has longitudinal data from a sample
of stores selling the product for a number of time periods before the price trial
and after the price trial. The sample consists of some control stores where
the price is not increased as well as from the test stores where the price was
increased during the price trial. In this type of applications, there could be
a substantial variation in among-store sales depending on the size and type
of stores. Nevertheless, the problem can be easily tackled by transformation
of the data before we apply model (7.20). In this application, however, the
appropriate transformation might be Yi(g)t = log(Xi(g)t) � lX rather than
(7.22), because the price elasticity of demand or the percent decrease in sales
is the quantity that tends to be constant among stores of di¤erent size, where
lX is the sample mean of log(Xi(g)t) data before the price increase. Moreover,
in some applications involving trends in sales, one may want to transform the
data as Yi(g)t = log(Xi(g)t)�c lX , where c is a constant that might have been
estimated by regression methods. We will address this issue further later in
this chapter. Also, for further details of this type of problems and related
issues, the reader is referred to Koschat and Weerahandi (2003).
In the following treatment we assume that, when historical data are avail-

able, the original data have already been appropriately transformed and that
model (7.20) is appropriate for the transformed data. All time-dependent pa-
rameters can be represented in a single equation by rewriting model (7.20) in
terms of the vector of all observations from subject i(g),

Yi(g) =
�
Yi(g)1; Yi(g)2; ::; Yi(g)T

�0
:

Then, we can de�ne our model as
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Yi(g) = �1T + �g1T + � + g + "i(g) , (7.23)

where �g = �+ �g, � is the grand mean so that
P
�g = 0, � and g are T � 1

vectors formed by �t�s and gt�s, and

"i(g) � N(0;�), with � = �2�1T1
0

T + �
2IT .

In some treatments of the problem found in the literature, another variance
component is introduced for the interaction between the subjects and the oc-
casions. A major drawback with such models is that they leave one variance
component inestimable, thus indicating over parameterization of the problem.
However there are other covariance structures under which the parameters are
identi�able. For a discussion on such covariance structures and for approxi-
mate results the reader is referred to Vonesh and Chinchilli (1997).
First consider the problem of estimating unknown parameters of the model.

This will also prove to be important in developing the ANOVA based on an
orthogonal decomposition of the total sums of squares. Point estimation of
location parameters requires some constraints to make them estimable. We
impose the following natural constraints, which are important in developing
tractable distributions as well:

GX
g=1

(ng�g) = 0; 1
0

T� = 0; 1
0

Tg=0 8g, (7.24)

and
GX
g=1

�
ngg

�
= 0:

Let

Y gt =
1

ng

ngX
i(g)

Yi(g)t;

g = 1; : : : ; G ; t = 1; : : : ; T be the sample mean of ng observations from the
subjects in group g and let Y be the grand mean of all the data. Also de�ne
the T � 1 vector

Yg =

0BBB@
Y g1
Y g2
...

Y gT

1CCCA ,

and de�ne various sample means, namely the group means, occasion means,
and subject means, as

Y g =
1

ngT

ngX
i(g)

TX
t=1

Yi(g)t =
1
0

TYg

T
,
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Y t =
1

N

GX
g=1

ngX
i(g)

Yi(g)t,

Y i(g) =
1

T

TX
t=1

Yi(g)t ,

where N =
GP
g=1

ng. The maximum likelihood estimates of the parameters

under the constraints (7.24) are

b� = Y ; (7.25)b�g = Y g � Y ; (7.26)

�̂ =
GX
g=1

�
ng
�
Yg � Y g1

��
=N; (7.27)

and bg = Yg � Y g1� �̂; (7.28)

The point estimates of � and g also take the familiar and intuitive forms
when their components are written as

�t = Y t � Y ; (7.29)

gt = Y gt � Y g � Y t + Y (7.30)

7.4 ANOVA UNDER EQUAL ERROR VARIANCES

In this section we develop the classical ANOVA under the common assump-
tion of equal error variances, an assumption made in almost all treatments of
the problem found in the literature. In the next chapter we shall relax this
assumption, which is usually made for mathematical tractability and simplic-
ity.
In view of the form of the point estimates of parameters in the equal vari-

ances case given above, consider the decomposition of the sums of deviations
of sample means,

Y i(g) � Y = (Y g � Y ) + (Y i(g) � Y g) (7.31)

and

(Yi(g)t � Y ) = (Y i(g) � Y ) + (Y t � Y ) +
(Y gt � Y t � Y g + Y ) + (7.32)

(Yi(g)t � Y gt � Y i(g) + Y g).
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The sum of cross products of any two terms on the right-hand side of (7.31)
and (7.32) is zero, implying that the corresponding vectors are orthogonal.
For example,

TX
t=1

GX
g=1

ngX
i(g)

(Y t � Y )(Yi(g)t � Y gt � Y i(g) + Y g)

=
TX
t=1

GX
g=1

(Y t � Y )
ngX
i(g)

(Yi(g)t � Y gt � Y i(g) + Y g)

=
TX
t=1

GX
g=1

ng(Y t � Y )(Y gt � Y gt � Y g + Y g) = 0.

Hence, the summation of squared terms in (7.31) and (7.32) yield the orthog-
onal decomposition of sums of squares,

St = Sg + Swg + So + Sog + Se, (7.33)

where

So = N
TX
t=1

(Y t � Y )2; (7.34)

Sg = T

GX
g=1

ng(Y g � Y )2; (7.35)

Sog =
TX
t=1

GX
g=1

ng(Y gt � Y t � Y g + Y )2; (7.36)

Swg = T
GX
g=1

X
i2g
(Y i(g) � Y g)2; (7.37)

Se =
TX
t=1

GX
g=1

ngX
i(g)

(Yi(g)t � Y gt � Y i(g) + Y g)2; (7.38)

and

St =
TX
t=1

GX
g=1

ngX
i(g)

(Yi(g)t � Y )2: (7.39)

Due to the orthogonality of the vectors on which they are based, the sums of
squares on the right hand side of (7.33) are independently distributed. The
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distribution of each sum of squares can be easily derived by averaging (7.20)
appropriately and using (7.21). For example, it follows from

Y i(g) = �+ �g + �i(g) + �i(g)

� N(�+ �g; �
2
� + �

2=T ) 8 i = 1; : : : ; ng (7.40)

that

Wg =
X
i2g

(Y i(g) � Y g)2

�2� + �
2=T

� �2ng�1 (7.41)

and that the random variables W1; : : : ;Wng are independently distributed.
Hence, we get

Swg
T�2� + �

2
� �2N�G . (7.42)

By expressing each term in the decomposition (7.33), in terms of its para-
meters and random e¤ects, it is shown similarly that the distribution of each
sum of squares term appearing in (7.33) divided by the expected mean sum of
squares has a chi-squared distribution. Their degrees of freedom and the ex-
pected value of the mean sum of squares are summarized in the ANOVA Table
7.3. As we will show below, various tests on main e¤ects and interactions can
be performed based on quantities from the ANOVA table.

Table 7.3 Two-factor repeated measures ANOVA: Expected values

Source DF SS E(MS)

Groups (factor 1) G� 1 Sg T
P
ng�g

2=(G� 1) + �2w
Within group (subjects) N �G Swg �2w = T�

2
� + �

2

Occasions (factor 2) T � 1 So N
P
�t

2=(T � 1) + �2

Groups � Occasions (T � 1)(G� 1) Sog

PP
ng

2
gt

(T�1)(G�1) + �
2

Error (N �G)(T � 1) Se �2

Total NT � 1 St

7.4.1 Testing the �xed e�ects

Comparison of �xed e¤ects as well inferences concerning the variance compo-
nents can be based on Table 7.3. First consider the problem of comparing the
main e¤ects due to the treatments. The hypothesis that all group means are
equal, namely that �1 = �2 = � � � = �T ; is equivalent to the hypothesis

H01 : �1 = �2 = � � � = �T = 0,

and so it can be tested based on the F -statistic

F1 =
MSG
MSWG

=
Sg=(G� 1)
Swg=(N �G) � FG�1;N�G. (7.43)
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The hypothesis is rejected for large values of the F -statistic. The p-value of
the test is

p = 1�HG�1;N�G
�
sg=(G� 1)
swg=(N �G)

�
; (7.44)

where HG�1;N�G is the cdf of the F distribution with G � 1 and N � G
degrees of freedom. Similarly, tests of the hypothesis that the occasion means
are equal, i.e.,

H02 : �1 = �2 = � � � = �T = 0

can be tested on the basis of the F -statistic

F2 =
MSO
MSE

=
So=(T � 1)

Se=(N �G)(T � 1) � FT�1;(N�G)(T�1). (7.45)

Finally, consider the equality of interaction terms

H02 : 11 = 12 = � � � = GT = 0,

which means that treatment group mean pro�les are parallel. Obviously, we
can test H02 using the F -statistic

F3 =
MSOG
MSE

=
Sog=(T � 1)(G� 1)
Se=(N �G)(T � 1) � F(T�1)(G�1);(N�G)(T�1). (7.46)

These results can be summarized in an ANOVA table, which is sometimes
known as Repeated Measures ANOVA and is abbreviated as RM ANOVA
. Notation used in the column heads are the same as that of conventional
ANOVA. A number of software packages such as SAS, SPSS, SPlus, and
XPro have procedures for performing various ANOVA methods with repeated
measures including the RM ANOVA presented in this section. With the SAS
package PROC GLM needs to be applied with the REPEATED statement.
XPro has menu-driven tools for alternative models requiring no programming.

Two-factor RM ANOVA: F -values

Source DF SS MS F-Value

Groups G� 1 Sg MSg =
Sg
G�1

MSg
MSwg

Within group N �G Swg MSwg =
Swg
N�G

Occasions T � 1 So MSo =
So
T�1

MSo
MSe

Groups � Occasions (G� 1)(T � 1) Sog MSog =
Sog

(G�1)(T�1)
MSog
MSe

Error (N �G)(T � 1) Se MSe =
Se

(N�G)(T�1)

Total NT � 1 St
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7.4.2 Testing the variance components

Inferences about the variance components �2� and �
2 are performed based on

the distributional results
Swg

T�2� + �
2
� �2N�G; (7.47)

and

V =
Se
�2
� �2(N�G)(T�1). (7.48)

Inference on the error variance is straightforward from (7.48). In particular,
the unbiased estimate of �2 isb�2 = se

(N �G)(T � 1) :

Similarly, the unbiased estimate of the among-subject variance based on the
above results is

b�2� =swg=(N �G)� se=(N �G)(T � 1)
T

:

As we discussed in Chapter 3, this type of estimate can frequently become neg-
ative, a well known undesirable property of the unbiased estimates of variance
components.
Other inferences on the variance component follow from the results in Chap-

ter 3. In the current application, the generalized p-value for testing the null
hypothesis

H0 : �
2
� � �20

is obtained as

p = 1� EGN�G
�

swg
T�20+se=V

�
; (7.49)

where GN�G is the cdf of the chi-squared distribution with N �G degrees of
freedom and the and expectation is taken with respect to the random variable
V de�ned by (7.48). Moreover, the generalized 100% lower con�dence bound
for �2� is the solution �

2
0 of the equation,

 =

1Z
se

swg+se

GT (N�G)

�
1

T�20
(
swg
1� b �

se
b
)

�
fB(b) db, (7.50)

where GT (N�G) is the cdf of the chi-squared distribution with T (N � G)
degrees of freedom and the integration is to be performed with respect to the
beta random variable B �Beta((N�G)(T�1)=2; (N�G)=2). In this situation
also the con�dence intervals for the variance component can be constructed
by the Tukey�Williams method, preferably with the Wang adjustment. The
XPro software package computes both sets of con�dence intervals and p-values
by exact numerical integration. It also provides p-values for testing each of
the three hypotheses on �xed e¤ects of the model. Inferences about the error
variance, �2e is straightforward from (7.48).
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7.4.3 Multiple comparisons

Unlike in regular ANOVA, in repeated measures ANOVA, the problem of
multiple comparisons is not an easy task. In fact, the arguments in specialized
approaches such as the Tukey method and the Sche¤e method do not go
through in the current problem, except in some special cases. Perhaps the best
and the easiest way to perform multiple comparisons in repeated measures is
using pairwise comparisons with the Bonferroni size adjustment. To compare
two treatment groups, �rst deduce the distribution of the estimate of group
means as

b�g = Y g = �g + �g + �g

� N

�
�g;

1

Tng
(T�2� + �

2)

�
. (7.51)

Let g1 and g2 be the two groups of interest. Then we get

Y g1 � Y g2 � N

�
�g1 � �g2;

1

T
(T�2� + �

2)(
1

ng1
+

1

ng2
)

�
;

and then using (7.42) we get

(Y g1 � Y g2)� (�g1 � �g2)q
1
T (

1
ng1

+ 1
ng2
)Swg=(N �G)

� tN�G. (7.52)

The two groups g1 and g2 can now be compared based on (7.52). In particular
the 100% con�dence interval for � = �g1��g2 is computed using the formula

(yg1 � yg2)� t(N�G)(1�
�

2
)

s
1

T
(
1

ng1
+

1

ng2
)

�
swg
N �G

�
, (7.53)

where tN�G(k) is the kth quantile of the Student�s t distribution with N �G
degrees of freedom and � = 1� .
If there were r prespeci�ed pairwise comparisons of interest, simultaneous

con�dence intervals can be obtained by applying (7.53) with the Bonferroni
adjustment. For example, in constructing simultaneous generalized con�dence
intervals for r pairs of di¤erences in group means, we apply (7.53) with �=r in
place of � = 1�. Therefore, the 100% simultaneous interval for a particular
pair, say � = �g1 � �g2 ; is computed as

(yg1 � yg2)� t(N�G)(1�
�

2r
)

s
1

T
(
1

ng1
+

1

ng2
)

�
swg
N �G

�
;

Example 7.2. Comparison of diet supplements
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Consider the data set shown in Table 7.4, an example on repeated measures
reported by Crowder and Hand (1990). In this example, the response variable
was the e¤ect (measured in terms of weights) of a vitamin E diet supplement
on growth of guinea pigs. The body weights of the animals were recorded
at the end of the weeks 1, 3, 4, 5, 6, and 7. The guinea pigs were given a
growth-inhibiting substance during week 1, and then the vitamin E therapy
was started at the beginning of week 5. Three groups of guinea pigs, receiving
zero, low, and high doses of vitamin E, were administered during the 6-weeks
period.

Table 7.4 E�ect of diet supplement on growth rates

Week: 1 3 4 5 6 7

Time: t01 t02 t03 t1 t2 t3

Group Subject X1 X2 X3 Xi(g) X4 X5 X6 Xi(g)

1 1 455 460 510 475.0 504 436 466 468.7
1 2 467 565 610 547.3 596 542 587 575.0
1 3 445 530 580 518.3 597 582 619 599.3
1 4 485 542 594 540.3 583 611 612 602.0
1 5 480 500 550 510.0 528 562 576 555.3

2 6 514 560 565 546.3 524 552 597 557.7
2 7 440 480 536 485.3 484 567 569 540.0
2 8 495 570 569 544.7 585 576 677 612.7
2 9 520 590 610 573.3 637 671 702 670.0
2 10 503 555 591 549.7 605 649 675 643.0

3 11 496 560 622 559.3 622 632 670 641.3
3 12 498 540 589 542.3 557 568 609 578.0
3 13 478 510 568 518.7 555 576 605 578.7
3 14 545 565 580 563.3 601 633 649 627.7
3 15 472 498 540 503.3 524 532 583 546.3

The subject means, Xi(g); before and after the start of vitamin E therapy
are also shown in Table 7.4. Figure 7.1 illustrates the pro�les of individual
guinea pigs belonging to each of the three groups. The �gure does not suggest
that the treatment groups are signi�cantly di¤erent. It also indicates that
most of the guinea pigs have been growing over time and hence perhaps it is
more appropriate to analyze the data by growth curves methods that we will
study later in this book. In any case the treatment groups can be analyzed by
RM ANOVA without assuming any parametric model for the growth curves.

One may wish to apply model (7.20) to raw data from all six weeks. How-
ever, if comparison of the three doses of vitamin E is the task of primary
importance, then the raw data should be transformed using formula (7.22).
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Figure 7.1 Subject pro�le plots by group
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Then, we could base our analysis on transformed data given in the table below.

Diet supplement on growth rates: Transformed data

Time: t1 t2 t3

Group SubjectnData: Y4 Y5 Y6

1 1 29.0 -39.0 -9.0
1 2 48.7 -5.3 39.7
1 3 78.7 63.7 100.7
1 4 42.7 70.7 71.7
1 5 18.0 52.0 66.0

2 6 -22.3 5.7 50.7
2 7 -1.3 81.7 83.7
2 8 40.3 31.3 132.3
2 9 63.7 97.7 128.7
2 10 55.3 99.3 125.3

3 11 62.7 72.7 110.7
3 12 14.7 25.7 66.7
3 13 36.3 57.3 86.3
3 14 37.7 69.7 85.7
3 15 20.7 28.7 79.7

Various sums of squares needed in constructing the ANOVA for testing
�xed e¤ects can be computed by applying equations (7.34)�(7.39). They
computations can be conveniently carried out using software packages such
as SAS, SPlus, SPSS, and XPro; XPro provides exact inference on variance
components as well. ANOVA tables obtained by applying transformed data
as well as the raw data are shown below.

ANOVA with raw data

Source DF SS F -value p-value

Treatments 2 18; 548 1:05 0:38
Within group 12 105; 434
Weeks 5 142; 555 52:55 0:00
Treatments � Weeks 10 9; 763 1:80 0:08
Error 60 32; 553

Total 89 308; 852
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ANOVA with transformed data
Source DF SS F -value p-value

Treatments 2 4; 075 0:77 :49
Within group 12 31; 797
Weeks 2 17; 192 23:83 0:00
Treatments � Weeks 4 6; 175 4:28 0:01
Error 24 8; 657

Total 44 67; 895

Clearly, regardless of whether we transform the data or not, the data do
not provide su¢ cient evidence to suspect that there is any di¤erence between
the treatment groups. The week e¤ects are of course highly signi�cant, a
�nding of less importance, because the guinea pigs were growing during the
experiment. Raw data provides some week evidence of interaction between
the e¤ects of the treatments and weeks. However, with transformed data we
can conclude that there is signi�cant interaction between the treatments and
the weeks, suggesting further investigation on the e¤ects of the treatments. If
we had su¢ cient data to detect the statistical signi�cance of the di¤erence in
treatments, then the e¤ects of the treatments would not have been the same
over the weeks. The unbiased estimate of the error variance computed using
the raw data is b�2 = 32553=60 = 542:6 and the 95% con�dence interval com-
puted using the F -statistic is [ 390.8, 804.1 ]. The unbiased estimate of the
among-subject variance is b�2� = (105434=12� 32553=60)=5 = 774. Its con�-
dence intervals can be computed by applying formula (7.50). In particular,
the 95% equal-tail interval for �2� is [658.5 3896.9].

7.5 OTHER TWO-FACTOR MODELS

In the layout used in model (7.20), subjects were nested under the levels of
one factor, say treatment groups. Measurements from the same subject were
not taken under the levels of both factors. Now consider the two-factor model
when the subjects are not nested under the levels of one factor but rather,
observations from each subject is taken at levels of both factors. Let A and
B denote the two factors and let Yiab denote the measurement taken from ith
subject when the level of factor A takes on the value a and that of B takes
on the value b. There are two widely used designs, which are appropriate and
practical depending on the experiment and the way data become available.

7.5.1 Cross classi�ed design

For the sake of simplicity of notation, let A and B also denote the number
of levels of factors A and B, respectively. Suppose it is possible to obtain
data from subjects for each pair of factor level (Aa; Bb); a = 1; : : : ; A and
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b = 1; : : : ; B. When one of the factors, say factor B; is time/occasion itself,
as is typically the case, this is practical if, at each occasion, data from the
subjects can be obtained for each of the A levels of factor A. For example,
consider a group of students undergoing an experiment, say to study the e¤ects
of tutoring before, during, and after the tutoring period. In this application
indeed one can obtain test scores of students from a number of subjects for the
same marking period. This is also the case if a number of related measures are
taken at each occasion from a number of patients. When we have a complete
set of data according to a cross-classi�ed design, the data can be set out as
in Table 7.5.

Table 7.5 Layout for the cross classi�ed design

Subject B1 B2 � � � BB

1 A1 Y111 Y112 � � � Y11B
...

...
...

...
...

...
I A1 YI11 YI12 � � � YI1B

...
...

...
...

...
...

1 Aa Y1a1 Y1a2 � � � Y1aB
...

...
...

...
...

...
I Aa YIa1 YIa2 � � � YIaB

...
...

...
...

...
...

1 AA Y1A1 Y1A2 � � � Y1AB
...

...
...

...
...

...
I AA YIA1 YIA2 � � � YIAB

Noting that this is a balanced three-way factorial design of the factors A,
B, and subjects, with no replications, and distinguishing the �xed e¤ects and
random e¤ect terms, we can formulate the mixed model

Yiab = �+ �a + �b + ab + �i + "ia + �ib + eiab, (7.54)

a = 1; : : : ; A; b = 1; : : : ; B; i = 1; : : : ; I,

where �i, "ia, �ib are random e¤ects due to subjects, and their interactions
between the two factors, �a, �b, and ab; are �xed e¤ects of factors A, B,
and their interaction, and eiab are the residual terms. In order to make the
parameters identi�able, we assume that, except for the individual random
e¤ect �i, the error term eiab (both of which are drawn from a population) and
the grand mean �, all other �xed e¤ects and interaction random e¤ects are
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normalized to sum to 0 when summed over a or b. We also make the usual
assumptions

�i � N(0; �2� ), "ia � N(0; �2�a), �ib � N(0; �2�b), (7.55)

and
eiab � N(0; �2) (7.56)

and that they are independently distributed. In this case the �xed e¤ects are
easily estimated as

b� = Y ; b�a = Y a � Y , b�b = Y b � Y (7.57)

ab = Y ab � Y a � Y b + Y (7.58)

and the estimates of the random e¤ects would follow from the ANOVA table,
which is derived from the orthogonal decomposition

(Yiab � Y ) = (Y a � Y ) + (Y b � Y ) + (Y i � Y ) + (Y ab � Y a � Y b + Y )
+(Y ia � Y i � Y a + Y ) + (Y ib � Y i � Y b + Y )
+(Yiab � Y ab � Y ia � Y ib + Y i + Y a + Y b � Y ), (7.59)

where

Y ia =
1

B

BX
b=1

Yiab;

Y ib =
1

A

AX
a=1

Yiab;

Y ab =
1

I

IX
i=1

Yiab;

Y A =
1

IB

BX
b=1

IX
i=1

Yiab;

Y B =
1

IA

AX
a=1

IX
i=1

Yiab

and

Y i =
1

AB

BX
b=1

AX
a=1

Yiab

are the sample means. It is straightforward to show that summation of squares
of each side of the above equation lead to the sum of squares decomposition

St = Sa + Sb + Si + Sab + Sai + Sbi + Se, (7.60)
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and that terms on the right-hand side are independently distributed, where

Sa = IB
AX
a=1

(Y a � Y )2; (7.61)

Sb = IA
BX
b=1

(Y b � Y )2; (7.62)

Si = AB
IX
i=1

(Y i � Y )2;

Sai = B
IX
i=1

AX
a=1

(Y ia � Y i � Y a + Y )2;

Sbi = A
IX
i=1

BX
b=1

(Y ib � Y i � Y b + Y )2; (7.63)

Sab = I
AX
a=1

BX
b=1

(Y ab � Y a � Y b + Y )2; (7.64)

Se =
IX
i=1

AX
a=1

BX
b=1

(Yiab � Y ab � Y ia � Y ib + Y i + Y a + Y b � Y )2

and

St =

IX
i=1

AX
a=1

BX
b=1

(Yiab � Y )2: (7.65)

As in the previous sections, the distribution of each sum of squares, and hence
the expected value and the degrees of freedom needed to set up the ANOVA,
is easily derived by averaging (7.54) over appropriate indices, writing the
corresponding term in (7.54) in terms of the random e¤ects, and then applying
known results for independent terms. For example, the expected value and
the distribution of Sab follows from the identity

Y ab � Y a � Y b + Y = ab + (eab � ea � eb + e),

because from known results from the �xed e¤ects two-way ANOVA it can be
shown directly that

AX
a=1

BX
b=1

(eab � ea � eb + e)2
�2=I

� �2(A�1)(B�1)
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Similarly, the expected value of Sa follows from the identity

Y a � Y = �a + "a + (ea � e),

and that of Sia follows from the identity

Y ia � Y i � Y a + Y = ("ia � "a) + (eia � ei � ea + e).

It is now evident that the ANOVA table appropriate for model (7.54) is
a mixed model version of the classical three-way ANOVA with no replicates.
The degrees of freedoms, the sums of squares, and the expected values of the
mean sums of squares of the resulting ANOVA are displayed in Table 7.6.

Table 7.6 RM ANOVA for the cross-classi�ed design: Expected values

Source DF SS E(MS)

Factor A A� 1 Sa
IB

P
�2a

A�1 + �2AS

Factor B B � 1 Sb
IA

P
�2b

(B�1) + �
2
BS

Subjects I � 1 Si AB�2� + �
2

A � Subjects (A� 1)(I � 1) Sai �2AS =AB�
2
�a=(A� 1) + �2

B � Subjects (B � 1)(I � 1) Sbi �2BS =AB�
2
�b=(B � 1) + �2

A �B (A� 1)(B � 1) Sab
I
PP

2ab
(A�1)(B�1) + �

2

Error (A� 1)(B � 1)(I � 1) Se �2

Total ABI � 1 St

Each of the hypotheses on �xed e¤ects, namely the equality of levels of
factor A and factor B and the equality of interactions between A and B; can
now be tested based on the appropriate columns of the ANOVA table. For
example, the �rst hypothesis is tested using the F -statistic

FA =
MSA
MSAI

=
Sa=(A� 1)

Sai=((A� 1)(I � 1))
� FA�1;(A�1)(I�1). (7.66)

The hypothesis is rejected for large values of the F -statistic. The p-value of
the test is

p = 1�HA�1;(A�1)(I�1)
�

Sa=(A� 1)
Sai=((A� 1)(I � 1))

�
; (7.67)

where H(A�1);(A�1)(I�1) is the cdf of the F distribution with (A � 1) and
(A� 1)(I � 1) degrees of freedom. As another example, the hypothesis of no
interaction between A and B is tested based on the p-value

p = 1�H(A�1)(B�1);(A�1)(B�1)(I�1)
�
Sab=((A� 1)(B � 1))

Sai=dABI

�
; (7.68)
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where H(A�1)(B�1);dABI is the cdf of the F distribution with (A � 1)(B � 1)
and

dABI = A� 1)(B � 1)(I � 1)
degrees of freedom.
The table below summarizes the computations involved in RM ANOVA for

the cross-classi�ed design. Testing of zero variance components are also based
on the F -tests provided by the ANOVA table. The software packages such
as SAS, SPSS, SPlus and XPro provide procedures for performing the RM
ANOVA.

RM ANOVA for the cross-classi�ed design: F -values

Source DF SS MS F-Vale

Factor A A� 1 Sa MSa =
Sa
A�1

MSa
MSai

Factor B B � 1 Sb MSb =
Sb
A�1

MSb
MSbi

Subjects I � 1 Si MSi =
Si
I�1

MSi
MSe

A � Subjects (A� 1)(I � 1) Sai MSai =
Sai

(A�1)(I�1)
MSai
MSe

B � Subjects (B � 1)(I � 1) Sbi MSbi =
Sbi

(B�1)(I�1)
MSbi
MSe

A �B (A� 1)(B � 1) Sab MSab =
Sab

(A�1)(B�1)
MSab
MSe

Error dABI Se MSe =
Se

dABI

Total ABI � 1 St

More general inferences on the variance components could also be made
based on the ANOVA table. For example, the generalized p-value for testing
the null hypothesis

H0 : �
2
� � �20

is obtained as

p = 1� EGI�1
�

si
AB�20+se=V

�
; (7.69)

where GN�G is the cdf of the chi-squared distribution with N �G degrees of
freedom and the and expectation is taken with respect to the random variable
V ,

V =
Se
�2
� �2(A�1)(B�1)(I�1).

Generalized con�dence intervals can be deduced as before using the formula
for the p-value. As we discussed in Chapter 3, they could also be constructed
by Tukey�Williams method with the Wang adjustment.

Example 7.3. Comparison of students� performance in Mathematics and
Statistics

Table 7.7 below presents a set of test scores of 7 students taking a certain
course in Mathematics and one in Statistics, which are denoted by M and S,
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respectively. The average score, over a scale form 0 to 10, for each course is
recorded over 5 marking periods. Noting that these data comprise a cross-
classi�ed design, assume that the test scores follow model (7.54).

Table 7.7 Mathematics and Statistics scores

Course Student T1 T2 T3 T4 T5

M 1 7.79 8.01 7.79 8.37 8.12
M 2 7.33 7.33 7.64 7.71 7.57
M 3 7.86 7.94 8.08 8.08 8.02
M 4 7.48 7.79 7.71 7.56 7.61
M 5 7.56 7.64 7.64 7.94 7.78
M 6 8.01 7.71 5.96 7.79 7.54
M 7 7.33 7.33 6.92 7.94 7.57

S 1 8.08 7.86 7.64 8.23 8.05
S 2 7.01 7.48 7.33 7.33 7.30
S 3 8.08 8.08 8.08 8.37 8.23
S 4 7.71 7.79 7.79 8.01 7.89
S 5 7.64 7.86 7.79 7.48 7.63
S 6 6.50 6.41 5.96 6.24 6.27
S 7 6.92 6.92 7.71 7.71 7.46

Data can be conveniently analyzed using a software package that provides
repeated measures procedures. For instance, SAS PROC GLM with the RE-
PEATED statement or XPro can be employed to obtain the ANOVA table.
The F -values and p-values for testing �xed e¤ects, computed using (7.66) and
(7.68) are shown in the following ANOVA table. It also shows the F -values
and p-values for testing the variance components. It should be emphasized
that the latter p-values are appropriate for testing the null hypotheses that
the variance components are equal to zero only.

Source DF SS F -value p-value

Course 1 0.500 0.884 0.383
Period 4 0.909 2.151 0.105
Students 6 10.80 29.80 0.000
Course � Students 6 3.051 8.416 0.000
Period � Students 24 2.534 1.747 0.089
Course � Period 4 0.274 1.760 0.364
Error 24 1.450

Total 68 19.467

Obviously, according to the observed p-values, 0.383, 0.105, and 0.36, none
of the �xed e¤ects, the mean scores for courses, the e¤ects of marking periods,



OTHER TWO-FACTOR MODELS 223

or their interactions are signi�cantly di¤erent. The variance components due
to among-subject variation and their interaction with the subjects are highly
signi�cant. The interaction between the subjects and the periods, however,
is not quite signi�cant at the 0.05 level. The p-value suggests some week sig-
ni�cance of that variance component as well. The following table shows the
95% generalized con�dence intervals and the adjusted Tukey�Williams inter-
vals, in terms of lower bounds (LB) and upper bounds (UB) of the intervals,
for the three variance components. The con�dence intervals also imply the
above conclusions concerning variance components. Notice also that the ad-
justed Tukey�Williams intervals and the generalized intervals are practically
the same.

Adjusted T�W Interval Generalized Interval
Variance Comp. LB UB LB UB

Students 0.067 0.867 0.068 0.866
Course � Students 0.014 0.241 0.014 0.240
Period � Students 0.0 0.076 0.0 0.072

7.5.2 Nested design

Now suppose the levels of factor B are nested under the levels of factor A.
This is the case, for instance, when an experiment is carried out in a number
of phases and levels of factor B are the occasions at which measurements
are taken. In each phase of the experiment, the level of Factor A, say the
treatment is kept �xed at a given level and observations are taken from each
of the I subjects. For the sake of the simplicity of notation, let B denote the
total number of levels of factor B, so that the total number of observations is
BI. When we have a set of data according to a nested design of this nature,
the data can be set out as in Table 7.8.

Table 7.8 Layout of nested design

A1 � � � Aa � � � AA
Subject B1 � � � B: � � � B: � � � B: � � � B: � � � BB

1 Y::: � � � Y::: � � � Y::: � � � Y::: � � � Y::: � � � Y:::
...

...
...

...
...

...
...

...
...

...
...

...
I Y::: � � � Y::: � � � Y::: � � � Y::: � � � Y::: � � � Y:::

Since the levels of factor B are nested under that of A, here we can allow
only main e¤ects of A and the interaction between A andB. Similarly, without
causing identi�cation problems, in addition to the error term we can introduce
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up to two random e¤ects in a standard mixed model. So, a model appropriate
for this design is

Yib(a) = �+ �a + �b(a) + �i + "ia + eib(a), (7.70)

a = 1; : : : ; A; b = 1; : : : ; ba; i = 1; : : : ; I, where �a and �b(a) are �xed e¤ects,
�i is the random e¤ect due to subjects, "ia is the random e¤ect representing
di¤erential subject random e¤ects at di¤erent levels of factor A, eib(a) is the
residual error, and ba is the number of observations available from each subject
when factor A takes on the value a. As before we assume that

�i � N(0; �2� ); "ia � N(0; �2�a) and eiab � N(0; �2): (7.71)

and that they are independently distributed. Assume that the parameters are
normalized so that, when summed over the levels of �xed e¤ects, they sum to
zero for all summations needed in the decomposition of the sums of squares.

Moreover, "ia being an incremental random e¤ect we assume that
AP
a=1

"ia = 0.

As before, de�ne the sample means in the obvious manner as

Y ia =
1

ba

baX
b(a)=1

Yib(a);

Y b(a) =
1

I

IX
i=1

Yib(a);

Y i =
1

A

AX
a=1

Y ia;

Y a =
1

I

IX
i=1

Y ia;

and

Y =
1

A

AX
a=1

Y a:

De�ne the sums of squares as

Si = B
IX
i=1

(Y i � Y )2; (7.72)

Sa = I
AX
a=1

ba(Y a � Y )2; (7.73)
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Sia =
IX
i=1

AX
a=1

ba(Y ia � Y i � Y a + Y )2; (7.74)

Sb(a) = I
AX
a=1

baX
b(a)=1

(Y b(a) � Y a)2; (7.75)

Se =
IX
i=1

AX
a=1

baX
b(a)=1

(Yib(a) � Y ia � Y b(a) + Y a)2 (7.76)

and

St =
IX
i=1

AX
a=1

baX
b(a)=1

(Yib(a) � Y )2: (7.77)

The ANOVA for model (7.70) can be constructed using these sums of squares.
The distribution of the sums of squares can be derived by expressing them

in terms of parameters and independent random variables appearing on the
right-hand side of (7.70). For example, they follow from the identities

Y b(a) � Y a = �b(a) + (eb(a) � ea),

Y ia � Y i � Y a + Y = ("ia � "a) + (eia � ei � ea + e),
Yib(a) � Y ia � Y b(a) + Y a = (eib(a) � eia � eb(a) + ea),

Y i � Y = (�i � �) + (ei � e)
and

Y a � Y = �a + "a + (ea � e)
Actually, the current design can be thought of as a variation of the one con-

sidered in Section 7.3 and deduce the ANOVA table. In fact, the degrees of
freedom and the sums of squares necessary to construct the ANOVA table for
the current design could be obtained from any software package, which pro-
vides the ANOVA for the model considered in that section. Since the model is
di¤erent, however, the de�nitions of sources of variation, the interpretations,
and the tests based on the ANOVA table are di¤erent. Here it is the mea-
surement occasions or the levels of factor B that are nested under treatment
groups (levels of factor A) rather than the subjects. Table 7.9 provides the
ANOVA for making usual inferences about the model (7.70).
The procedure of testing the �xed e¤ects and the variance components

based on the ANOVA table is similar to that of the previous section. For
example, the equality of the e¤ects of A levels is tested using the F -statistic

F1 =
Sa=(A� 1)

Sia=((I � 1)(A� 1))
� FA�1;(I�1)(A�1) (7.78)
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Table 7.9 RM ANOVA for the nested design: Expected values

Source DF SS E(MS)

Subjects I � 1 Si B�2i + �
2

Intereaction B(A) B �A Sb(a) I
AP
a=1

P
b2a
�2b(a)=(B �A)+�2

Factor A A� 1 Sa I
AP
a=1

P
b2a
�2a=(A� 1) + �2AW

A � Subjects (I � 1)(A� 1) Sia �2AW =B�2�a=(A� 1) + �2
Occasions � Subjects (I � 1)(B �A) Se �2

Total BI � 1 St

and the equality of �b(a) terms are tested using the F�statistic

F2 =
Sb(a)=(B �A)

Se=((I � 1)(B �A))
� FB�A;(I�1)(B�A) . (7.79)

The table below summarizes the computations involved in RM ANOVA for
the nested design.

RM ANOVA for the nested design: F -values

Source DF SS MS F -Value

Subjects I � 1 Si MSi =
Si
I�1

MSi
MSe

Interaction B(A) B �A Sb(a) MSb(a) =
Sb(a)
B�A

MSb(a)
MSe

Factor A A� 1 Sa MSa =
Sa
A�1

MSa
MSia

A � Subjects (I � 1)(A� 1) Sia MSia =
Sia

(I�1)(A�1)
MSia
MSe

Occa. � Sub. (I � 1)(B �A) Se MSe =
Se

(I�1)(B�A)

Total BI � 1 St

The testing of zero variance components is also based on F -tests provided
by the above ANOVA. Other inferences are carried out by the generalized
approach based on the distributional results

Se
�2
� �2(I�1)(B�a),

Si
B�2i + �

2
� �2(I�1) ,

and
Sia

B�2�a=(A� 1) + �2
� �2(I�1)(A�1) .
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7.6 REGRESSION AND RM ANCOVA

In Section 7.3 we already saw the need for regression methods to reduce the
among subjects variation. We also need to take the regression approach when
some of the important factors a¤ecting the response variable do not take on
a set of discrete or qualitative values, as was the case in the foregoing treat-
ment. In a regression setting, we can handle both situations by introducing
appropriately de�ned covariates in the kind of models we discussed above. We
will continue to assume that the covariates have an intrinsically linear (which
includes polynomials de�ned in terms of the covariates) relationship with the
response variable.

7.6.1 Controlling subject variation

First consider the situation where the objective of the regression is to control
some of the variation of the experimental units. Invoking regression meth-
ods to reduce the among-subject variation is especially important when the
response variable substantially vary from one subject to another. While bio-
medical experiments are not really exceptions, this problem arise more often in
socioeconomic, marketing, environmental, and agricultural experiments. For
example, when a market analyst needs to test the e¢ cacy and compare alter-
native promotions on a product, the analyst would obtain a set of longitudinal
data from a sample of stores selling the product for a number of time periods
before and after the promotions. The analyst would also use some control
stores with no promotion. In this application there could be a substantial
variation among store sales. This is because there could be large and small
stores and various types of stores (e.g. supermarkets and drug stores) selling
the product. Then, in analyzing the data from the marketing experiment,
the analyst needs to tackle the problem of store heterogeneity. In fact the
problem is likely to arise in any situation where the experimental unit is a
store, a school, a hospital, a plot of land, a geographical region such as a city,
and so on.
The easiest and perhaps one of the most e¤ective way of controlling the

among subject variation is using a set of historical data before the treatments
are administered. When historical data are not available one can also use
certain attributes of the experimental unit to control the variation. One can do
this even when historical data are available and further controlling is desirable.
For example, in the marketing experiment described above, the number of
checkouts of a store can be used to represent the store size. This store attribute
and other attributes such as the type of a store (supermarket, drug store,
convenience store, etc.) are also important in formulating a regression model
when we are interested in estimating the e¤ect of the promotion by store
attributes. It is indeed the case that the e¤ect of a promotion at a supermarket
is di¤erent from that at a convenience store. In a regression setting we can
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easily handle both the quantitative variables and the qualitative variables
together, when the latter is represented by a set of dummy variables.
In the treatment below we assume that the data have been transformed so

that we can assume a simple linear regression for modeling data from a group
of subjects. Koschat and Weerahandi (2003) showed that widely used log
transformed data are not good enough to achieve the homoscedastic variances
required in the ordinary least-squares estimation of regression parameters.
Figure 7.2 below shows a plot of a representative sales data S from the above
application transformed as Yi(g) = log(Si(g)) � lS, where lS is the sample
mean of log(Si(g)) as a function of the store size. Observe that the variance
of data tend to decrease dramatically with the size of the stores. Ignoring
this fact will result in highly unreliable results due to large variation of small
stores. In other words, ordinary least-squares estimation of parameters would
give equal weights to the observations from small and large stores, whereas
Figure 7.2 suggests that we should give much smaller weights to the smaller
stores. To outline some useful results dealing with heterogeneous experimental
units, consider the problem of estimating a vector of parameters � based on
a vector of response variables S and a matrix of covariates W. Koschat
and Weerahandi (2003) showed that when a set of historical values on S is
available, a model appropriate to handle the data can be set up as S = U�+E,
whereUi(g)=Si(g)Wi(g) and S is the vector of mean historical responses. They
showed that this particular transformation leads to an error structure with
known weights that allows us to transform the model to a regression model
with a homoscedastic error structure. More speci�cally, they showed the
transformation leads to an error structure of the form E~N

�
0; �2D

�
, where

D =diag(S1; � � � ; Sn), which leads to the simple linear regression model

eS = eU�+ eE; where eE = D�1=2E~N
�
0; �2I

�
and eS = D�1=2S, eU = D�1=2U, where

D�1=2 =

0BBBBBB@
S
�1=2
1 0

... 0

0 S
�1=2
2

... 0
...

...
. . .

...

0 0
... S

�1=2
n

1CCCCCCA
is the inverse square root of matrix D.

7.6.2 Classical ANCOVA

To introduce the method of Analysis of Covariance (ANCOVA), �rst consider
the problem of testing the overall e¤ect of the treatment during the trial pe-
riod, possibly by one or more other factors, when the dependent variable of the
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Figure 7.2 Heteroscedasticity of log sales data

regression is the average of responses taken over time. The results presented
here also applies when we need to estimate and compare the treatment e¤ects
for each time period separately, without MANOVA and without making any
assumption on the correlation structure for the responses taken over time. In
this case, multiple comparisons are handled with the Bonferroni adjustment.
Let Yi(g) be the response from ith subject in group g and Xki(g) be the value
of kth covariate to be used in the regression. One of the covariates is possibly
the average of historical data obtained from the subject prior to administering
of the treatments. To compare G groups, consider the linear model

Yi(g) = �g +

KX
k=1

�kXki(g) + �i(g); (7.80)

i(g) = 1; : : : ; ng; g = 1; : : : ; G:

As before assume that
�i(g) � N(0; �2); (7.81)

an assumption that can be relaxed by invoking the methods suggested by
Koschat and Weerahandi (1990, 1992) and Ananda (1998). Let

y0g =
�
Yg1; Yg2; :::; Ygng

�
be the responses available from Group g and let y = (y01;y

0
2; :::;y

0
G)

0 be the
vector of all N =

P
ng responses. Similarly, let Xg denote the ng:�K matrix

of covariate data for the subjects in Group g; and X = (X0
1;X

0
2; :::;X

0
G)

0 is
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a matrix of dimension N: �K. Then, in matrix notation, the model can be
expressed as

y = Z� +X� + �; � � N
�
0; �2I

�
(7.82)

= W�+ �

where � = (�1; �2; : : : ; �G)
0
; � = (�1; �2; : : : ; �K)

0
; � = (�;�)

0,

Z =

0BBB@
1n1 0 � � � 0
0 1n2 � � � 0
...

...
. . .

...
0 � � � 0 1nG

1CCCA
N�G

is the design matrix formed by the dummy variables indicating the groups,
and

W = (Z;X) :

Moreover, we assume that the data have already been transformed appropri-
ately before setting up model (7.82). As discussed by Koschat andWeerahandi
(2003) this is especially important in dealing with data from heterogeneous
experimental units such as stores, cities, schools, hospitals, and so on.
Consider the problem of testing the hypothesis

H0 : �1 = �2 = � � � = �G: (7.83)

If the null hypothesis is true, then the model reduces to

y = � +X� + �

= Ve� + �; (7.84)

where � is the common parameter under the null hypothesis, V = (1N ;X),
and e� = (�;�0)0. The Analysis of Covariance (ANCOVA) is based on the
reduction of error sum of squares from model (7.84) to model (7.82). The
error sum of squares for model (7.82) is easily computed from e = y �Wb�
or from the standard regression formula as

e0e = y0y�b�0W0y

= y0y � y0W(W
0
W)

�1
W0y

= y0(I�W(W
0
W)

�1
W0)y:

The error sum of squares under (7.84) is computed by replacingW in above
formula by V. The degrees of freedom of these quantities can also be deduced
from the standard regression results. The results lead to an F -test and all nec-
essary computations can be summarized in an ANCOVA table as illustrated
by Table 7.10, where the sums of squares are de�ned as

S1 = y0(W(W
0
W)

�1
W0�V(V0

V)
�1
V0)y:

S2 = y0(I�W(W
0
W)

�1
W

0
)y;
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and
S3 = y

0(I�V(V0
V)

�1
V0)y:

.

Table 7.10 ANCOVA for comparing treatment groups

Source DF SS MS F -Value

Groups G� 1 S1 MS1 =
Si
G�1

MS1
MS2

Error withW = (Z;X) N �G�K S2 MS2 =
S2

N�G�K

Error with V =(1N ;X) N �K � 1 S3

It is evident from the ANCOVA table that the p-value for testing H0 is

p = 1�HG�1;N�G�K

 
N �G�K
G� 1

y0(W(W
0
W)

�1
W0�V(V0

V)
�1
V0)y

y0(I�W(W
0
W)

�1
W

0
)y

!
;

(7.85)
where HG�1;N�G�K is the cdf of the F distribution with G�1 and N�G�K
degrees of freedom. The null hypothesis of equal treatment e¤ects is rejected
for small values of the p-value.

Example 7.4. Testing the e¢ cacy of promotions

Table 7.11 below shows a set of illustrative data on sales of a cellular service
plan at 15 stores during a promotional campaign period of 5 weeks. At �ve of
the test stores a free phone is given as a purchase incentive and at �ve other
stores, the service activation fee is waived during the trial period. The rest
of the stores are kept as control stores with no special promotion. The three
groups of stores are denoted as P , A, and C. Let us use the same notation to
indicate the 1-0 dummy variables representing the groups. Although the data
in the table are hypothetical, they are generated from a model of the form
assumed above. Also shown in the table are mean sales denoted by Ypost at
each store during the trial period. In this type of application it is important
to control the store to store variation using a set of historical sales. In Table
7.9 a set of historical sales from the stores are also given and are denoted by
Ypre.
Let us �rst consider the problem of comparing the overall e¤ects of the promo-
tion using a regression of Ypost on Ypre and group dummies. More precisely,
consider the regression model

Ypost = �Ypre + �C + A+ �P + �:

The table below shows the estimated parameters of the model along with
the standard errors of the estimates and the corresponding t-values. The
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Table 7.11 Cellular service sales by store and week

Time: pre t1 t2 t3 t4 t5 post

Group Store Ypre Y1 Y2 Y3 Y4 Y5 Ypost

C 1 406.5 423 406 412 407 426 414.8
C 2 154.3 183 185 155 177 169 173.8
C 3 491.8 499 507 454 507 495 492.4
C 4 61.6 65 82 88 65 80 76
C 5 384.8 394 375 403 378 374 384.8

A 6 603.3 630 625 620 620 693 637.6
A 7 74.6 19 175 118 61 197 114
A 8 403.9 316 457 482 487 444 437.2
A 9 68.4 93 57 186 79 116 106.2
A 10 487.5 495 502 554 570 503 524.8

P 11 294.4 357 417 416 527 318 407
P 12 173.4 245 239 226 266 372 269.6
P 13 580.7 514 615 760 715 765 673.8
P 14 113.2 101 235 203 237 332 221.6
P 15 172.2 374 351 253 384 245 321.4

table suggests that the promotions has worked. This can be formally tested
performing an ANCOVA.

Variable Parameter Estimate Std. Error t-value

Ypre � 0.9718 0.0184 52.7704
C � 17.0220 8.0772 2.1074
A  45.6649 8.4347 5.4140
P � 119.4300 7.6745 15.5620

This can be accomplished by running the regression Ypost = � + �Ypre + �
in the absence of the e¤ects due to promotions and studying the increase in
error sum of squares. The ANCOVA table obtained using the results of the
two regressions is shown below.

ANCOVA for testing the promotional e¤ects

Source DF SS MS F -Value

Groups 2 25159.9 12579.95 73.27
Error with

�
C;A;P;Ypre

�
11 1912.0 173.81

Error with (115;Ypre) 13 27071.9
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Based on the results in the ANCOVA table the p-value for testing the hypoth-
esis of no e¤ect due to promotions can be computed as p = 1�H2;11(73:27) =
0:0. According to the p-value and the estimated parameters of the regression
model, the promotions are highly signi�cant. Moreover, we can now proceed
to compare the two promotions to conclude by means of the t-test that the
free phone has been more e¤ective than the waiver of the service activation
fee. If the cost of each incentive is available, one can also investigate the
economics of the two incentive plans.

7.6.3 RM ANCOVA

In the previous section we assumed that we have only one observation taken
from each subject. Now suppose we have repeated measures taken over time
from each subject as was the case in Section 7.3. Also assume that the ma-
trix X of covariates is measured only once as the case in many applications
including the problem of handling that subject heterogeniety with historical
mean responses that motivated the treatment in this section. Also we con-
tinue to assume that the regression coe¢ cients are the same for all groups.
The readers interested in results for situations when these assumptions do not
hold are referred to Vonesh and Chinchilli (1997).
By combining models(7.82) and (7.80), we then get

Yi(g)t = �g + �t + gt +

KX
k=1

�kXki(g) + "i(g)t (7.86)

t = 1; : : : ; T ; i(g) = 1; : : : ; ng; g = 1; : : : ; G,

where �g is the mean e¤ect of treatment g, �t is the occasion e¤ect at time t,
gt is their interaction, "i(g)t = �i(g) + �i(g)t; and "i(g) = ( "i(g)1; : : : ; "i(g)T )

0

is distributed as "i(g) � N(0;�). As seen in Section 7.3, the error covariance
matrix � has a compound symmetric covariance structure of the form

� = �2�1T1
0

T + �
2IT .

A major advantage of a covariance matrix having the compound symmetric
structure is that the generalized least-squares estimates (also the MLEs) of
parameters are the same as the ordinary least-squares estimates. Also assume
that �t and gt satisfy the constraints given in Section 7.3. Then, as in that
section, inferences on treatment e¤ects and the coe¢ cients of covariates can
be based on the data

Y i(g) = �g +
KX
k=1

�kXki(g) + "i(g) (7.87)

= �g +X
0
i(g)� + "i(g); (7.88)



234 MIXED MODELS IN REPEATED MEASURES

a result that can also be established by a transformation of the data with an
orthogonal matrix having the vector T�1=210T as its �rst row, where X

0
i(g) =

(X1i(g); X2i(g); :::; XKi(g)) and

Y i(g) =
1

T

TX
t=1

Yi(g)t .

As before, the model can be expressed in matrix notation as

y = Z� +X� + �; � � N
�
0; e�2I�

= W�+ �; (7.89)

where y = (y01;y
0
2; :::;y

0
G)

0 and y0g =
�
Y g1; Y g2; :::; Y gng

�
. Model (7.89) allows

us to compare the treatments as in the conventional ANCOVA. To test the
signi�cance of occasion e¤ects and interactions, we obtain from (7.86) and
(7.87)

Yi(g)t � Y i(g) = �t + gt + "0i(g)t:

Now it is clear that tests on the signi�cance of occasion e¤ects and interactions
can be based on the sum of squares decomposition implied by the identity

(Yi(g)t � Y i(g)) = (Y t � Y ) + (Y gt � Y t � Y g + Y )
+(Yi(g)t � Y gt � Y i(g) + Y g), (7.90)

where various sample means are de�ned as in Section 7.3. To construct the
RM ANCOVA in view of these results, de�ne

S1 = y0(W(W
0
W)

�1
W0�V(V0

V)
�1
V0)y:

S2 = y0(I�W(W
0
W)

�1
W0)y;

So = N

TX
t=1

(Y t � Y )2;

Sog =
TX
t=1

GX
g=1

ng(Y gt � Y t � Y g + Y )2;

and

Se =

TX
t=1

GX
g=1

X
i2g

(Yi(g)t � Y gt � Y i(g) + Y g)2:

Note that the de�nitions of the sums of squares needed in testing occasion
e¤ects and interactions are the same as those used in RM ANOVA. With this
notation, we can now carry out the RM ANCOVA as summarized by Table
7.12.
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RM ANCOVA for testing group and occasion e¤ects

Source DF SS MS F-Val

Groups G� 1 S1 MS1 =
Si
G�1

MS1
MS2

Error withW N �G�K S2 MS2 =
S2

N�G�K

Occasions T � 1 So MSo =
So
T�1

MSo
MSe

Groups � Occa. (T � 1)(G� 1) Sog MSog =
Sog

(T�1)(G�1)
MSog
MSe

Error (T � 1)(N �G) Se MSe =
Se

(T�1)(N�G)

Example 7.5. Testing the e¢ cacy of promotions (continued)

Consider again the data in Table 7.11 representing the sales of a cellular service
plan at 15 stores during a promotional campaign. We are now in a position to
further study the e¤ects of the promotions. Since Ypre is the only covariate
beyond the group e¤ects used in the regression of Example 7.4, according
to (7.89), the F -test of the hypothesis of no e¤ect due to promotions is the
same as the one reported in Example 7.4. According to (7.90), the rest of
the information needed to set up the RM ANCOVA table can be obtained by
performing a classical RM ANOVA on the data. The complete RM ANCOVA
obtained in this manner is shown below.

Table 7.12 RM ANCOVA for testing the e�ects due to week and promotion

Source DF SS MS F-Value

Groups 2 25159.9 12579.95 73.27
Error with

�
C;A;P;Ypre

�
11 1912.0 173.81

Occations 4 28750.9 7187.73 2.47

Groups � Occations 8 27042.0 3380.25 1.17

Error 48 139719.0 2910.81

As we had concluded in Example 7.5, the di¤erences in group e¤ects are
highly signi�cant and that the promotions have worked in increasing the sales
of cellular service. The p-value based on the F -value of the RM ANCOVA
table for testing the di¤erences in occasion e¤ects is 0.057, which suggests
that there is some evidence of changed (in fact increased) sales over time.
The p-value for testing the hypothesis of no interaction e¤ect is 0.3417. These
p-values lead us to conclude that, while the promotions have worked and have
been steady over time, the sales have been somewhat increasing over the trail
period and that the trends are about the same for all groups.
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Exercises

7.1 Consider the repeated measures problem with one group of subjects

Yit = �i+�t + �it ,

where �i is the random e¤ect due to subject i, �t, t = 1; : : : ; T are �xed e¤ects
due to occasions/treatments, and �it are the residual terms. Also make the
usual normality assumption that

�i � N(0; �2�), �it � N(0; �2); t = 1; : : : ; T ; i = 1; : : : ; I

and that they are all independently distributed.

(a) Show hat Var(Yit) = �2� + �
2 and that Cov(Yit; Yit0) = �2�, and hence

that the data vector formed by observations taken from each subject has a
covariance matrix with the compound symmetric structure.
(b) Consider the decomposition of sample means,

Yit � Y = (Yi � Y ) + (Yt � Y ) + (Yit � Y i � Y t + Y ).

(c) Show that
Yt � Y = (�t � �) + (�t � �)

and hence obtain distribution of the mean sum of squares, MSB = I
P
(Yt �

Y )2 =(T � 1) and deduce that it has mean I
P
(�t � �)2=(T � 1) + �2.

(d) Similarly express each other term in the decomposition in terms of para-
meters and random variables with zero means, and derive the distribution of
the corresponding mean sum of squares.

7.2 Consider again the model in Exercise 7.1. Let � = (�1; : : : ; �T )
0 be the

vector formed by all occasion means and let a be a vector of known constants
of same dimension. Establish procedures for testing hypotheses of the form

H0 : a
0� �k,

where k is a hypothesized constant. Deduce procedures for constructing
100% con�dence intervals for equal-tail con�dence intervals for a0�.

7.3 Consider the data set reported in Table 7.1. Assuming model 7.1, test
the hypothesis that the mean reaction times for probe words 1 is 8 units
greater than that for probe words 2. Construct a 99% con�dence interval for
the mean di¤erence. Also construct 99% con�dence intervals for the sum of
all occasion means and for each variance component.

7.4 Consider model (7.20) and the decomposition

(Yi(g)t � Y ) = (Y i(g) � Y ) + (Y t � Y )
+(Y gt � Y t � Y g + Y ) + (Yi(g)t � Y gt � Y i(g) + Y g).
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(a) Show that

Yi(g)t � Y gt � Y i(g) + Y g = ei(g)t � egt � ei(g) + eg.

(b) Hence show that

TP
t=1

GP
g=1

P
i2g
(Yi(g)t � Y gt � Y i(g) + Y g)2

�2
� �2(N�G)(T�1).

(c) Similarly express each of the other terms in the decomposition in terms of
parameters and random variables with zero means, and derive the expected
value and the distribution of the corresponding mean sum of squares.

7.5 Consider the data in Table 7.4 and assume model (7.20).

(a) Construct 95% equal-tail con�dence interval for the mean di¤erence be-
tween the �rst two treatment groups.
(b) Construct 99% equal-tail con�dence intervals for the variance component.
(c) Test the hypothesis that the variance component is greater than 600.

7.6 Consider model (7.54). By taking an approach similar to that of Section
7.3 or otherwise, establish procedures for multiple comparisons.

7.7 Consider the data in Table 7.7 and assume model (7.54).

(a) Test the hypothesis that subject�s variance component is less than 1.
(b) Construct a 95% equal-tail con�dence interval for the di¤erence in mean
scores in Statistics and Mathematics.
(c) Construct 99% equal-tail con�dence intervals for each variance component.
(d) Construct 95% lower con�dence bounds for each of the variance compo-
nents.

7.8 With the usual notation, consider the model,

Yib(a) = �+ �a + �b(a) + �i + "ia + eib(a):

(a) Show that

Y ia � Y i � Y a + Y = ("ia � "a) + (eia � ei � ea + e).

(b) Show that

IX
i=1

AX
a=1

ba
(eia � ea � ei + e)2

�2
� �2(A�1)(I�1).

(c) Similarly, obtain the distribution of
IP
i=1

AP
a=1
ba("ia � "a)=�2�a and hence de-

duce the expected value of
IP
i=1

AP
a=1
ba(Y ia � Y i � Y a + Y )2.
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(d) Similarly, obtain the expected values of the other sums of squares in con-
structing the ANOVA for the model.

7.9 Consider the model and ANOVA in Exercise 7.8.

(a) Derive the generalized p-value for testing null hypotheses of the form

H0 : �
2
i � �20.

(b) Similarly establish a testing procedure for testing the null hypotheses of
the form

H0 : �
2
ia � �20.

(c) Deduce the left-sided 100% con�dence interval for �2i .
(d) Deduce the equal-tail 100% con�dence interval for �2�a.

7.10 Consider the following data reported by Crowder and Hand (1990)
concerning a dietary treatment. Observations on one of the measurements
(plasma ascorbic acid) were taken from 12 patients at 7 occasions, twice before,
three times during, and twice after the treatment regime.

Patient reactions to treatment

Phase I Phase II Phase III
PatientnWeek: 1 2 6 10 14 15 16

1 0.22 0.00 1.03 0.67 0.75 0.65 0.59
2 0.18 0.00 0.96 0.96 0.98 1.03 0.70
3 0.73 0.37 1.18 0.76 1.07 0.80 1.10
4 0.30 0.25 0.74 1.10 1.48 0.39 0.36
5 0.54 0.42 1.33 1.32 1.30 0.74 0.56
6 0.16 0.30 1.27 1.06 1.39 0.63 0.40
7 0.30 1.09 1.17 0.90 1.17 0.75 0.88
8 0.70 1.30 1.80 1.80 1.60 1.23 0.41
9 0.31 0.54 1.24 0.56 0.77 0.28 0.40
10 1.40 1.40 1.64 1.28 1.12 0.66 0.77
11 0.60 0.80 1.02 1.28 1.16 1.01 0.67
12 0.73 0.50 1.08 1.26 1.17 0.91 0.87

Assuming model (7.70) set up the ANOVA table. Test the hypothesis that
there is no signi�cant di¤erence between treatment phases and discuss your
�ndings. Also test the interaction between occasions and treatments. Test
for the signi�cance of variance components and construct 95% con�dence
intervals.

7.11 Consider the data set shown in Table 7.4 on the e¤ects of three diet
supplements. Carry out an RM ANCOVA to compare the diet supplements
in a regression setting in which the vector of response means prior to admin-
istering the diets is a covariate in the regression model. Also test the e¤ect of
time and the interaction e¤ects of diet supplements over time.



CHAPTER 8

REPEATED MEASURES UNDER
HETEROSCEDASTICITY

8.1 INTRODUCTION

In the treatment of repeated measures in Chapter 7 we assumed that all treat-
ment groups have equal variances. Traditionally, this assumption is made for
simplicity and mathematical tractability. While there is no serious problem
when the assumption is reasonable, as demonstrated by Ho, Weerahandi, and
Hung (2002), the assumption can lead to serious erroneous conclusions when
the variances are substantially di¤erent. Recall that the conventional ANOVA
problems that rely on the equal variances assumption can dramatically reduce
the power of tests. Moreover, the magnitude of the lack of power problem of
classical ANOVA tests based on that assumption increases with the number
of treatments being compared. Moreover, in situations of higher-way ANOVA
under heteroscedasticity, one can even make misleading conclusions. For ex-
ample, as we saw in Chapter 2, mislead by a classical F -test, one may conclude
that a certain factor of an ANOVA is signi�cant when in fact a di¤erent factor
is signi�cant. As we will see later in this chapter, tests in repeated measures
context also su¤er from similar drawbacks. Since even simple repeated mea-
sures models involve a number of factors, it is important that we do not

(Generalized Inference in Repeated Measures, Edition 2). By (Weerahandi)
Copyright c 2013 John Wiley & Sons, Inc.
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make the assumption of equal variances for the sake of simplicity unless the
assumption is very reasonable.
In view of these considerations, the purpose of this chapter is to estab-

lish procedures for making inferences about unknown parameters without the
assumption of equal group variances. The treatment in this chapter will be
limited to the most widely used two-factor model discussed in Chapter 7. Al-
though it is not di¢ cult to extend procedures to other types of design, this is
an area requiring further research.
If the covariance matrices are unstructured, the problem is one in MANOVA

under unequal covariances, a problem that we have already addressed in Chap-
ter 6. If the covariance matrix is structured as speci�ed in Chapter 7 and if the
group variances are unequal, then there are no exact classical tests available
for testing any of the hypotheses concerning �xed e¤ects discussed in Chapter
7. Nevertheless, the problem can be tackled by taking the generalized ap-
proach as in other situations of heteroscedasticity. This is accomplished by
considering the appropriate sums of squares in the case of known variances
and handling the unknown variances by their estimates in such a way that
the resulting probability statements become exact.

8.2 TWO-FACTOR MODEL WITH UNEQUAL GROUP VARIANCES

Consider the two-factor repeated measures model in which possibly unequal
numbers of subjects are nested under the treatment groups. Again it should
be emphasized that, in designed experiments involving repeated measures,
among-subjects variation should be minimized by taking some observations
from each subject before the treatments are given. Then, the corrected re-
sponses Yi�s are computed by subtracting the pre-treatment mean responses
from the corresponding data observed after the treatments. We assume that
response data from each subject has already been corrected in this manner
whenever such pre-experimental data are available.
Suppose there are G groups and there are ng subjects in group g. Let

P
ng

= N be the total number of subjects used in the experiment. Each subject
is observed at T equally or unequally spaced time points . Let Yi(g)t denote
the value of the response variable (already corrected if pre-experimental data
are available) taken at the tth time point from the ith subject in group g.
Consider again the mixed model

Yi(g)t = �g + �t + gt + �i(g) + �i(g)t; (8.1)

t = 1; : : : ; T ; i(g) = 1; : : : ; ng; g = 1; : : : ; G

discussed in Chapter 7, but without the assumption of equal error variances.
Recall that �i(g) is the random e¤ect due to among-subject variation, �g,
g = 1; : : : ; G are the treatment (or factor 1) e¤ects, �t, t = 1; : : : ; T are
e¤ects due to occasions (or factor 2), gt are their interactions, and �it are the
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residual terms. Extending the usual assumption about variance components
with possibly unequal group variances, we now have

�i(g) � N(0; �2�), �i(g)t � N(0; �2g); (8.2)

t = 1; : : : ; T ; i(g) = 1; : : : ; ng; g = 1; : : : ; G.

As before, all time-dependent parameters can be represented in a single equa-
tion by rewriting model (8.1) in terms of the vector of all observations from
subject i(g), Yi(g) =

�
Yi(g)1; ::; Yi(g)T

�0
. Then the model can be expressed as

Yi(g) = �1T + �g1T + � + g + "i(g), (8.3)

where �g = �+ �g, � is the grand mean so that
P
�g = 0, � and g are T � 1

vectors formed by �t�s and gt�s, and

"i(g) � N(0;�g), with �g = �2�1T1
0

T + �
2
gIT

8.3 POINT ESTIMATION

First consider the problem of estimating unknown parameters of the problem
when the variance components have been speci�ed or estimated. This will
also prove to be important in developing the ANOVA based on an orthogonal
decomposition of the total sums of squares. Point estimation of location
parameters requires some constraints to make them estimable. To develop
tractable distributions consider the natural constraints

GX
g=1

�
ng�

�1
g �g

�
= 0; 1

0

T� = 0; 1
0

Tg= 0 8g, (8.4)

and
GX
g=1

�
ng�

�1
g g

�
= 0:

Let

Y gt =
1

ng

X
i2g

Yi(g)t;

g = 1; : : : ; G ; t = 1; : : : ; T

be the sample of mean ng observations from subjects in group and let Y be
the grand mean of all the data. Also de�ne the T � 1 vector

Yg =

0BBB@
Y g1
Y g2
...

Y gT

1CCCA ,
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and various sample means, namely the group means, occasion means, and
subject means, as

Y g =
1

ngT

X
i2g

TX
t=1

Yi(g)t =
1
0

TYg

T
,

Y t =
1

N

GX
g=1

X
i2g

Yi(g)t ,

Y i(g) =
1

T

TX
t=1

Yi(g)t .

It can be shown (Exercise 8.1) that the maximum likelihood estimates of the
parameters under the constraints (8.4) are

b� =

 
GX
g=1

�
ng�

�1
g

�!�1 GX
g=1

�
ng�

�1
g Yg

�
1, (8.5)

�̂ =

 
GX
g=1

ng�
�1
g

!�1 GX
g=1

�
ng�

�1
g

�
Yg � Y g1

��
; (8.6)

b�g = Y g � b�;
and bg = Yg � Y g1� �̂ (8.7)

for g = 1; : : : ; G: The covariance matrices are of course typically unknown and
so the parameters are estimated after replacing the variance components by
their estimates, which will be developed later in this chapter.

8.4 TESTING FIXED EFFECTS

Testing various hypotheses of interest by the generalized approach requires
development of appropriate test variables. When the group error variances are
unequal, we also need to work out the distribution of appropriately weighted
sums of squares that comprise the test variables. Since it is the group variances
that are di¤erent, the weighting needs to be applied only to the group sample
means. Thus, the counterpart of (7.31) takes the form

Y i(g) � Y ! = (Y g � Y !) + (Y i(g) � Y g); (8.8)

where

Y g =
1

ngT

X
i2g

TX
t=1

Yi(g)t;
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and

Y ! =

GP
g=1

!gY g

GP
g=1

!g

;

where
!g =

ng
�2� + �

2
g=T

.

Since X
i2g

(Y i(g) � Y g) = 0

we get the weighted sums of squares decomposition

GX
g=1

X
i2g

wg(Y i(g) � Y !)2 = T
GX
g=1

!g(Y g � Y !)2 +
GX
g=1

X
i2g

wg(Y i(g) � Y g)2;

where wg = !g=ng. The standardized between-group sum of squares

eSb = T GX
g=1

!g
�
Y g: � Y !

�2
; (8.9)

is distributed independently of

Sg = T
X
i2g
(Y i(g) � Y g)2; g = 1; : : : ; G;

which are also mutually independent as they are computed from subjects from
di¤erent groups. To derive the distributions of these quantities, let us start
with

Y i(g) = �+ �g + �i(g) + �it

� N(�+ �g; �
2
� + �

2
g=T ), i = 1; : : : ; ng .

Now it follows from distributional results involving a single sample from a
normal population that

Vg =
Sg

T�2� + �
2
g

� �2ng�1; g = 1; : : : ; G (8.10)

and in turn that eSwg = GX
g=1

Sg
T�2� + �

2
g

� �2N�G . (8.11)

Moreover, from known results on weighted least-squares regression, we get

W = eSb � �2G�1 (8.12)

if the treatment means are equal.
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8.4.1 Comparing Treatment Groups

Now we are in a position to develop procedure for testing various hypotheses of
interest. First consider the null hypothesis that there is no di¤erence between
the treatment groups�that is, the hypothesis

H01 : �1 = �2 = � � � = �T = 0. (8.13)

Tests of the hypothesis can be based on the distributions given in the previous
section. In order to �nd an appropriate extreme region to base our test, write
the standardized between group sum of squares as eSb = eSb ��21; :::; �2G� ; where
�2g = �

2
�+�

2
g=T : Let esb() be the observed value of eSb( ). Consider the potential

extreme region,

C =

�
Y j eSb ��21; :::; �2G� � esb��21s1S1 ; :::; �

2
GsG
SG

��
:

Using (8.10) and (8.12), its probability can be expressed as

p = Pr(C) = Pr

�
W � esb� s1

V1
; :::;

sG
VG

��
; (8.14)

where V1; : : : ; VG have chi-squared distributions irrespective of the validity
of the null hypothesis. Moreover, W has a central chi-squared distribution
under the null hypothesis and a noncentral chi-squared distribution otherwise,
leading to higher probability of C for any deviation from the null hypothesis.
Hence, C is indeed an extreme region with its probability free of unknown
parameters.
The probability can be easily computed by Monte Carlo method by generat-

ing a large number of random numbers from the chi-squared random variables
and then �nding the fraction of times the inequality in formula (8.14) is sat-
is�ed. The p-value can also be evaluated numerically for any desired level of
accuracy. The accuracy of the integration could be enhanced by expressing
it in terms of some beta random variables as we did in the one-way ANOVA
problem. To see this and that the resulting test is a generalized F -test, express
C as

C = fY j eSb � esb� s1
V1
; :::;

sG
VG

�
g

= fY j eSb � esb( s1eSwgB1B2:::BG�1 ;
s2eSwg (1�B1)B2:::BG�1 ; :::; sGeSwg (1�BG�1) )g

= fY j
eSb=(G� 1)eSwg= (N �G)

(8.15)

� esb( s1
B1B2:::BG�1

; :::;
sG

(1�BG�1)
)
N �G
G� 1 g;
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where

Bj =

 
jP

g=1
Vg

!
 
j+1P
g=1

Vg

! � Beta
 

jX
g=1

ng � 1
2

;
nj+1 � 1

2

!
; j = 1; 2; :::; G� 1:

Under the null hypothesis

eSb=(G� 1)eSwg= (N �G)
� FG�1;N�G (8.16)

and if the null hypothesis is not true, its distribution is noncentral F; lead-
ing to higher probability of 8.15 for any deviation from the null hypothesis.
Therefore, the p-value of the generalized F -test given by (8.15) and (8.16) can
be computed as

p = 1� E
�
HG�1;N�G

�
N �G
G� 1 esb(s;B)

��
; (8.17)

where

esb(s;B) = esb( s1
B1B2:::BG�1

;
s2

(1�B1)B2:::BG�1
;

s3
(1�B2)B3:::BG�1

; :::;
sG

(1�BG�1)
);

HG�1;N�G is the cdf of the F distribution with G� 1 and N �G degrees of
freedom and the expectation is taken with respect to the independent beta
random variables Bj ; j = 1; 2; :::; G � 1. This p-value can be conveniently
computed using the XPro software package.

Example 8.1. Comparing consumer demands in four regions

Consider the consumer demand for a certain food item, say eggs. In a demand
comparison of four regions based on sales data from a sample of supermarkets,
suppose a measure of weekly demand level is measured as

Demand = 10,000
Revenue from sale of eggs
Revenue from all food sales

:

Shown in Table 8.1 is a hypothetical data set that was generated by simulating
model (8.1).
Although the data in Table 8.1 seem typical in a repeated measures design,

a closer look at the data reveals that the group variances in this case are
substantially di¤erent. This is evident from Table 8.2, which displays the
group means and the standard deviations (MLEs) of the data
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Table 8.1 Weekly demand for eggs in four regions

Region Store Week 1 Week 2 Week3 Week 4 Week 5

1 1 21.537 39.204 37.492 32.372 33.039
1 2 22.17 33.595 24.768 25.751 32.081
1 3 24.493 16.593 34.038 29.993 24.567
1 4 30.573 40.248 30.95 34.713 26.04
1 5 33.854 25.044 40.569 41.867 27.177

2 6 27.716 32.056 30.528 28.785 26.312
2 7 28.037 28.818 29.461 29.951 31.377
2 8 29.798 29.971 33.017 32.217 30.152
2 9 28.571 29.333 29.227 28.022 31.023
2 10 31.56 28.745 29.111 30.391 30.798

3 11 33.614 31.844 31.065 33.607 30.432
3 12 30.431 33.592 33.983 32.162 33.9
3 13 32.567 31.845 29.857 33.534 34.418
3 14 32.809 32.651 31.198 33.122 34.17
3 15 32.738 34.003 30.785 33.19 34.96

4 16 29.672 34.541 36.911 30.857 23.868
4 17 30.534 25.244 29.061 33.071 34.601
4 18 24.456 35.638 31.371 29.08 38.951
4 19 30.821 27.201 26.615 36.217 27.297
4 20 29.889 32.117 37.363 27.285 33.96

Obviously, in this application it is not reasonable to assume that the vari-
ances are equal. But does it make any di¤erence in our conclusions whether or
not the assumption is reasonable? To examine this, let us �rst ignore the fact
that variances are di¤erent and apply the classical ANOVA as usually done by
most practitioners for the sake of simplicity. The ANOVA table obtained by
applying formulas given in Chapter 7 for the case of homoscedastic variances
is shown below.

ANOVA Table

Source DF SS F -value p-value

Regions 3 110.99 2.137 0.136
Within region 16 277.00
Weeks 4 86.83 1.29 0.284
Regions � Weeks 12 135.05 0.668 0.775
Error 64 1078.08

Total 99 0.94
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Table 8.2 Weekly demand summary statistics

Region Week 1 Week 2 Week 3 Week 4 Week 5

Sample Means

1 26.53 30.94 33.56 32.94 28.58
2 29.14 29.78 30.27 29.87 29.93
3 32.43 32.79 31.38 33.12 33.58
4 29.07 30.95 32.26 31.30 31.74

Standard Deviations

1 4.86 8.97 5.46 5.36 3.37
2 1.40 1.22 1.46 1.44 1.85
3 1.06 0.89 1.38 0.52 1.61
4 2.35 4.07 4.26 3.12 5.42

According to the p-values appearing in the ANOVA table, none of the e¤ects
including the regional e¤ect is signi�cant. Now let us drop the equal variances
assumption and retest the hypothesis that there is no di¤erence in the mean
demand for eggs in di¤erent regions. This can be accomplished by applying
formula (8.14) or (8.17). The p-value for testing the di¤erence in regions
then become 0.0008. This means that the di¤erence in regional demand is
highly signi�cant despite what the classical ANOVA suggested. Usually milder
assumptions make the p-value of a test larger and power of a test smaller. But
here the assumption of equal variances is so unreasonable that the p-value
under the assumption of equal variances is substantially larger. This example
clearly demonstrates the tremendous deterioration of the power of classical
F -tests under heteroscedasticity. Ho, Weerahandi, and Hung (2002) provide
additional examples of this nature.

8.4.2 Testing the Interactions

Next consider the problem of testing the group � time interaction,

H0 : gt = 0 8 g = 1; ::; G; t = 1; ::; T:

As discussed in Ho, Weerahandi and Hung (2002), this hypothesis can be
based on the normalized version of the corresponding sum of squares used in
the classical ANOVA table,
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eSog = eSog �b�g; b�;�g; g = 1; :::; G� = GX
g=1

n
0

gbg��1g bg (8.18)

=
GX
g=1

ng

�
Yg � b�g1T � b��0 ��1g �

Yg � b�g1T � b�� (8.19)

Under H0, from the classical ANOVA we get

eSog � �2(G�1)(T�1):
To handle the unknown variances case, rewrite eSog as eSog ��21; :::; �2G; �21; :::; �2G�,
where �2g = T�

2
� + �

2
g: Notice that

��1g =
1

�2g
I � �2�

�2g�
2
g

11
0

=
1

�2g
I �

�
�2g � �2g

�
=T

�2g�
2
g

11
0

is a function of only �2g and �
2
g. From known results on the equal variances

case, which are still valid within each group, we get

Ug =
Seg
�2g

� �2(T�1)(ng�1) (8.20)

and

Vg =
Sg

�2g
� �2ng�1; (8.21)

where

Seg =
TX
t=1

X
i2g

�
Yi(g)t � Y i(g) � Y gt + Yg

�2
and

Sg = T
X
i2g

�
Y i(g) � Y g

�2
:

As in the previous section, we can �nd a generalized test using the extreme
region

C = fY j eSog ��21; :::; �2G; �21; :::; �2G� � esog(�21se1Se1
; :::;

�2GseG
SeG

;

�21s1
S1

; :::;
�2GsG
SG

)g; (8.22)
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where lowercase letters stand for observed values of the random variables.
Clearly the observed sample points fall on the boundary of this subset of
the sample space and its probability increases for any departure from H02:
Hence, C is an extreme region leading to generalized tests. Its p-value can be
computed as

p = 1� Pr[eSog ��21; :::; �2G; �21; :::; �2G�
� esog ��21se1

Se1
; :::;

�2GseG
SeG

;
�21s1
S1

; :::;
�2GsG
SG

�
]

= 1� E
�
F�2

(G�1)(T�1)

�esog �se1
U1
; :::;

seG
UG

;
s1
V1
; :::;

sG
VG

���
; (8.23)

where the expectation is taken with respect to the independent chi-squared
random variables Ug; Vg; g = 1; ::; G de�ned by equation (8.20).

8.4.3 Testing the equality of occasion e�ects

Finally consider the problem of testing the equality of occasion e¤ects; i.e.,
H0: � = 0: Following the above approach, tests of H0 can be based on the
normalized occasion sum of squares eSo ��21; :::; �2G; �21; :::; �2G� = eSo, where

eSo =
GX
g=1

ngb�0

��1g
b�

=
GX
g=1

ng

�
Yg � b�g1T � bg�0 ��1g �

Yg � b�g1T � bg� : (8.24)

Under H0; we have bS2o v �2T�1: (8.25)

By taking the approach in previous sections, the extreme region is now de�ned
as

C = fY j eSo ��21; :::; �2G; �21; :::; �2G� � eso(�21se1Se1
; :::;

�2GseG
SeG

;

�21s1
S1

; :::;
�2GsG
SG

)g: (8.26)

Its p-value is computed as

p = 1� Pr[eSo ��21; :::; �2G; �21; :::; �2G�
� eso��21se1

Se1
; :::;

�2GseG
SeG

;
�21s1
S1

; :::;
�2GsG
SG

�
]

= 1� EF�2T�1

�bs2o�se1U1 ; :::; seGUG ; s1V1 ; :::; sGVG
��

, (8.27)
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where the expectation is taken with respect to the independent chi-squared
random variables Ug; Vg; g = 1; ::; G de�ned by equation (8.20). The p-values
(8.23) and (8.27) can be computed by exact (up to desired level of accuracy)
numerical integration or can be well estimated by Monte Carlo integration. In
the later case, both probabilities can be computed simultaneously using the
same set of chi-squared random variates generated from Ug; Vg; g = 1; ::; G.

Example 8.2. Comparing consumer demands in four regions (continued).

Consider again the data set in Table 8.1. Now we are in a position to test the
null hypothesis of constant demand for eggs over the study period and the
interaction between the time and region without relying on the assumption
of equal variances. Application of formula (8.27) with current data yields a
p-value of 0.37 for testing the equality of week e¤ects. So, there is no reason
to doubt the null hypothesis of constant weekly demand. From (8.23) we get a
p-value of 0.64, suggesting that there is no interaction between the weeks and
the regions. These are the same conclusions we made based on the classical
ANOVA, but now we are not relying on the assumption of equal variances.

8.5 MULTIPLE COMPARISONS

Now suppose we have established the signi�cance of di¤erence in factor e¤ects
so that we can proceed to do multiple comparisons. Comparing treatment
groups is of special importance. As pointed out in Chapter 7, except in some
special cases, specialized approaches such as the Tukey-type methods and
Sche¤e-type methods fail in repeated measures problems even in the case of
homoscedastic group variances. Nevertheless, the Bonferroni method, which
is based on pair-wise comparisons, still allows us to carry out multiple com-
parisons. Since the Bonferroni procedures are usually more powerful than the
Sche¤e procedures in most practical applications involving reasonable number
of multiple comparisons, we can take the Bonferroni approach to tackle the
current problem without sacri�cing the power of the test.
First consider the problem of comparing two treatment groups, say g1 and

g2. Recall that the point estimate of the mean e¤ect due to group g without
any grand mean correction is b�g = Y g. We can easily obtain its distribution
as

Y g = �g + �g + �g

� N(�g;
1

Tng
(T�2� + �

2
g),

Let g1 and g2 be the two groups of interest. Then the di¤erence in sample
group means is distributed as

Y g1 � Y g2 � N(�g1 � �g2;
1

T
(
�2g1
ng1

+
�2g2
ng2

); (8.28)
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where �2g = T�2� + �
2
g. Since �

2
g1 and �

2
g1 are nuisance parameters, we can

tackle them as in the Behrens�Fisher problem using the within group sample
variance Sg1 and Sg2 , which are unbiased estimates of the nuisance parameters.
Recall that the distribution of within group sample variance is given by

Vg �
Sg

�2g
� �2ng�1: (8.29)

8.5.1 Hypothesis testing

To illustrate the approach we can take in hypothesis testing, consider one-
sided hypotheses of the form

H0 : �g1 � �g2 � �0 (8.30)

for comparing the two groups of interest. By taking the approach of Tsui and
Weerahandi (1989) to derive the solution to the Behrens�Fisher problem in
a formal manner, or by the substitution method discussed in Chapter 1, we
get the appropriate extreme region for testing H0 as

C =

8>><>>:Y j (Y g1 � Y g2)� �0r
1
T (

�2g1
ng1

+
�2g2
ng2
)

�
yg1 � yg2 � �0q
1
T (

sg1
Vg1ng1

+
sg2

Vg2ng2
)

9>>=>>;
=

8<:Y j Z �
yg1 � yg2 � �0q
1
T (

sg1
Vg1ng1

+
sg2

Vg2ng2
)

9=; ;
where, when �g1 � �g2 = �0, Z is a standard normal random variable. Now it
is evident that the generalized p-value for testing left-sided hypotheses of the
form (8.30) is given by (see Exercise 8.3)

p = Pr

8<:Z � yg1 � yg2 � �0q
1
T (

sg1
Vg1ng1

+
sg2

Vg2ng2
)

9=;
= 1� EGng1+ng2�2

24 (yg1 � yg2 � �0)png1 + ng2 � 2q
1
T (

sg1
Bng1

+
sg2

(1�B)ng2 )

35 ; (8.31)

where Gng1+ng2�2 is the cumulative distribution function of the Student�s t
distribution with ng1 +ng2 �2 degrees of freedom and the expectation is with
respect to the beta random variable

B =
Vg1

Vg1 + Vg2
� Beta(ng1 � 1

2
;
ng2 � 1
2

):
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This is the repeated measures counterpart of the generalized t-test given by
Tsui and Weerahandi (1989). In fact the p-value can be computed by invok-
ing any software that provide the generalized t-test to the Behrens�Fisher
problem.

8.5.2 Con�dence intervals

Next consider the problem of constructing con�dence intervals for the di¤er-
ence in the e¤ects of two treatment groups, say g1 and g2. Let � = �g1��g2 be
the parameter of interest. Generalized intervals could be derived using a gen-
eralized pivotal quantity or deduced simply from the generalized p-value given
above. The latter amounts to �nding one-sided 100% generalized con�dence
intervals based on the probability statement

Pr

8<:Z � yg1 � yg2 � �q
1
T (

sg1
Vg1ng1

+
sg2

Vg2ng2
)

9=; = : (8.32)

It immediately follows from (8.32) that the 100% generalized con�dence for
� is

� � (yg1 � yg2)� k(sg1 ; sg2);

where k = k(sg1 ; sg2) is chosen such that

EGng1+ng2�2

24 k
p
ng1 + ng2 � 2q

1
T (

sg1
Bng1

+
sg2

(1�B)ng2 )

35 = : (8.33)

Other types of generalized con�dence intervals can also be constructed in a
similar manner. Of particular importance are the two-sided intervals. It can
be deduced from one-sided intervals that the 100% equal-tail generalized
con�dence for � is

(yg1 � yg2)� k(sg1 ; sg2) � � � (yg1 � yg2) + k(sg1 ; sg2); (8.34)

where k = k(sg1 ; sg2) = k(1+)=2 is computed by replacing  in equation (8.33)
by (1 + )=2.
If there were r prespeci�ed pairwise comparisons of interest, simultaneous

con�dence intervals can be obtained by applying foregoing formulas with the
Bonferroni adjustment. For example, in constructing simultaneous generalized
con�dence intervals for r pairs of di¤erences in group means, we apply (8.34)
with �=r in place of � = 1 � . This means that the 100% simultaneous
interval for a particular pair of means, say � = �g1 � �g2 , is computed as

(yg1 � yg2)� kr(sg1 ; sg2) � � � (yg1 � yg2) + kr(sg1 ; sg2);
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where kr = kr;(sg1 ; sg2) is chosen such that

EGng1+ng2�2

24 kr
p
ng1 + ng2 � 2q

1
T (

qg1
Bng1

+
qg2

(1�B)ng2 )

35 = 1� �

2r

= 1� 1� 
2r

; (8.35)

where qg is the observed value of

Qg =
Sg
Tng

=

P
i2g
(Y i(g) � Y g)2

ng
:

Example 8.3. Comparing consumer demands in four regions (continued)

Consider again the data set in Table 8.1. Suppose we wish to compare the
mean demand is region 1 with each of the other three groups. The table below
shows the group means and the sums of squared deviation from store means
for each of the four regions on which we can base our comparison.

Group Group Mean Sg Qg

1 30.51 240.28 12.014
2 29.80 12.65 0.633
3 32.66 3.06 0.152
4 31.06 21.01 1.051

With this summary information or directly using Y i(g) raw data, general-
ized intervals for mean di¤erences can be constructed using a software package
such as XPro that provide solutions to the Behrens�Fisher problem. In con-
structing simultaneous con�dence intervals, say at 95% level, the parameter
�=r should be set as 0:05=3 = 0:0167. This means that, in order the simul-
taneous con�dence level to be 95%, we should construct pairwise intervals at
98.33%. The table below shows the 95% generalized simultaneous con�dence
intervals obtained in this manner. It is evident from the con�dence intervals
that the di¤erence between �1 and �3 are statistically signi�cant and that �1
is not signi�cantly di¤erent from �2 and �4.

Mean Di¤erence Estimate Conf. Interval

�1 � �2 0.71 -1.15 , 2.57
�3 � �1 2.15 0.32, 3.98
�4 � �1 0.55 -1.40, 2.38
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8.6 INFERENCE ON VARIANCE COMPONENTS

Inferences on the group error variances �2g, g = 1; ::; G are easily made using
the chi-squared statistics

Ug =
Seg
�2g

� �2(T�1)(ng�1): (8.36)

This implies, in particular, that Seg=(T � 1)(ng � 1) is an unbiased estimate
of �2g. Inferences on the among-subject variance �

2
� is not straightforward

although necessary distributional results are readily available from the result

Vg =
Sg

T�2� + �
2
g:
� �2ng�1; g = 1; ::; G: (8.37)

Since the classical approach does not provide a systematic way of attacking
the problem, here again we need to take the generalized approach. To do so,
let

V �
GX
g=1

Vg � �2N�G:

Now consider, for instance, the null hypothesis,

H0 : �
2
� � �20; (8.38)

Consider the extreme region given by

C =

(
GX
g=1

Sg
T�2� + �

2
g

�
GX
g=1

sg
T�2� + �

2
gseg=Seg

)
(8.39)

=

(
V �

GX
g=1

sg
T�2�+

seg
Ug

)
: (8.40)

It is easily veri�ed that C has all the required properties of an extreme re-
gion appropriate for de�ning generalized p-values. The resulting p-value is
computed as

p =Max
�2�

Pr(C) = 1� E
"
F�2N�G

 
GX
g=1

qg
T�20 + seg=Ug

!#
; (8.41)

where the expectation is taken with respect to the chi-squared random vari-
ables Ug, g = 1; :::; G; and F�2N�G

is the cdf of the chi-squared distribution
with N �G degrees of freedom.
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The generalized con�dence intervals could be derived by using a generalized
pivotal or deduced from the above p-value. In particular, the one-sided 100%
generalized con�dence limits, say �20, for �

2
� are obtained from

E

"
F�2N�G

 
GX
g=1

qg
T�20 + seg=Ug

!#
= k; (8.42)

where k =  for the lower con�dence limit and k = 1 �  for the upper
con�dence limit.

8.7 RM ANCOVA UNDER HETEROSCEDASTICITY

ANCOVA results presented in Chapter 7 could be easily extended to the case
of unequal group variances. To outline the approach, as in that chapter, �rst
consider the problem of testing the overall e¤ect of the treatment during the
trial period when the dependent variable of the regression is the average of
responses taken over time. The results presented here also applies when one
needs to estimate and compare the treatment e¤ects for each time period
separately, without MANOVA and without making any assumption on the
correlation structure for the responses taken over time.
As before, to compare G treatment groups, consider the linear model

Yi(g) = �g +
KX
k=1

�kXki(g) + �i(g); (8.43)

i(g) = 1; : : : ; ng; g = 1; : : : ; G;

where Xki(g), k = 1; : : : ; G is a set of covariates. In Chapter 7 we assumed
that the group variances are all equal. Now let us drop that assumption and
just assume that their error terms independently and normally distributed as

�i(g) � N(0; �2g): (8.44)

Results for this case can be deduced from that of Ananda (1998). To present
the main results from Ananda (1998), let us continue to use the notation

y0g =
�
Yg1; Yg2; :::; Ygng

�
to represent the responses available from Group g and let y = (y01;y

0
2; :::;y

0
G)

0

be the vector of all N =
P
ng responses. Let Xg denote the ng: �K matrix

of covariate data for the subjects in Group g and X = (X0
1;X

0
2; :::;X

0
G)

0 is a
matrix of dimension N �K. In matrix notation, the model can be expressed
as

y = Z� +X� + � (8.45)

= W�+ �; (8.46)
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where
� � N (0;�) ;

� = (�1; �; : : : ; �G)
0
; � = (�1; �2; : : : ; �K)

0
; � = (�;�)

0,

Z =

0BBB@
1n1 0 � � � 0
0 1n2 � � � 0
...

...
. . .

...
0 � � � 0 1nG

1CCCA
N�G

is the design matrix formed by dummy variables indicating the groups,

W = (Z;X) ,

and

� =

0BBB@
�21In1 0 � � � 0
0 �22In2 � � � 0
...

. . .
...

0 � � � 0 �2GInG

1CCCA
N�N:

is the variance covariance matrix. Being a block diagonal matrix, � can also
be expressed as a direct sum of matrices as

� =�21In1 � �22In2 � � � � � ��2GInG :

Consider the problem of testing the null hypothesis

H0 : �1 = �2 = � � � = �G: (8.47)

If the null hypothesis is true, then we have

y = � +X� + �

= Ve�; (8.48)

where � is the common parameter under the null hypothesis, V = (1N ;X),
and e� = (�;�0)0. If group variances were known, � becomes a known matrix
and so we could base a test on the chi-squared statistic

y0(��1W(W
0
��1W)

�1
W0��1 ���1V(V0

��1V)
�1
V��1)y � �2G�1:

(8.49)
Since the group variances �2g are in fact unknown parameters, they can be
estimated by the residual sums of squares S2g obtained by regressing yg on
�g1ng +Xg. Moreover, it is known from the standard regression theory that

Ug =
S2g
�2g
� �2ng�K�1: (8.50)
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It is now clear that ANCOVA under unequal group variances could be per-
formed by taking the generalized approach. The generalized test can be
obtained by the substitution method. As follows from Ananda (1998), the
generalized p-value for testing H0 is

p = 1�E
n
F�

�
y0(DW(W

0
DW)

�1
W0D�DV(V0

DV)
�1
VD)y

�o
; (8.51)

where

D =
U1
s21
In1 �

U2
s22
In2 � � � � � �

UG
s2G
InG

F� is the cdf of the chi-squared distribution with G � 1 degrees of freedom,
s2g is the observed value of S

2
g , and the expectation is taken with respect to

the chi-squared random variables Ug; g = 1; : : : ; G. The generalized p-value
is easily computed by Monte Carlo method by generating a large number of
sets of random numbers from the chi-squared random variables, computing

F�

�
y0(DW(W

0
DW)

�1
W0D�DV(V0

DV)
�1
VD)y

�
for each set, and then

estimating the expected value appearing in (8.51) by their average. Ananda
(1998) also expressed (8.51) as a generalized F -test, in which the expectation
is taken with respect to a set of beta random variables and the F� in (8.51) is
replaced by the cdf of the F distribution with G� 1 and N �G�K degrees
of freedom, just like in the classical ANCOVA.

8.7.1 Case of repeated measures

Now suppose we have repeated measures taken over time from each subject as
often the case. Also assume that the matrix X of covariates is measured only
once and that regression coe¢ cients are the same for all groups, as assumed
in Chapter 7. Then in place of (8.43) consider the model

Yi(g)t = �g + �t + gt +
KX
k=1

�kXki(g) + "i(g)t; (8.52)

t = 1; : : : ; T ; i(g) = 1; : : : ; ng; g = 1; : : : ; G.

where �g is the mean e¤ect of treatment g, �t is the occasion e¤ect at time t,
gt is their interaction, "i(g)t = �i(g) + �i(g)t; and "i(g) = ( "i(g)1; : : : ; "i(g)T )

0

is distributed as "i(g) � N(0;�g), where for each group g the error covariance
matrix �g has the compound symmetric covariance structure

� = �2�1T1
0

T + �
2
gIT .

A major advantage of a covariance matrix having the compound symmetric
structure is that the generalized least-squares estimates (also the MLEs) of
parameters are the same as the ordinary least-squares estimates. Also assume
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that �t and gt satisfy the constraints given in Section 8.2. Then, as in
that section, the treatment groups can be compared and the coe¢ cients of
covariates can be estimated on the data

Y i(g) = �g +
KX
k=1

�kXki(g) + "i(g) (8.53)

= �g +X
0
i(g)� + "i(g); (8.54)

where X0
i(g) = (X1i(g); X2i(g); :::; XKi(g)),

Y i(g) =
1

T

TX
t=1

Yi(g)t; and "i(g) =
1

T

TX
t=1

"i(g)t � N(0; �2� +
�2g
T
).

As before, the model can be expressed in matrix notation as

y = Z� +X� + �

= W�+ �; (8.55)

where
� � N

�
0; e�� ;

y = (y01;y
0
2; :::;y

0
G)

0
, y0g =

�
Y g1; Y g2; :::; Y gng

�
, and

e� = e�21In1 � e�22In2 � � � � � �e�2GInG ;
where e�2g=�2�+�2g=T . Now it is clear that the generalized p-value for testing
the null hypothesis H0 can be deduced by replacing y in (8.51) by y and
replacing �2g by e�2g. As before, e�2g can be tackled by the error sum of squareseS2g obtained by regressing yg on �g1ng +Xg. Hence, the generalized p-vale
for testing the equality of treatment means can be computed as

p = 1�E
n
F�

�
y0(DW(W

0
DW)

�1
W0D�DV(V0

DV)
�1
VD)y

�o
; (8.56)

where

D =
U1es21 In1 � U2es22 In2 � � � � � �UGes2G InG ;

F� is the cdf of the chi-squared distribution with G � 1 degrees of freedom,es2g is the observed value of eS2g , and the expectation is taken with respect to
chi-squared random variables Ug; g = 1; : : : ; G.
Inferences on occasion means and interactions could also be obtained using

the results established in this chapter, and they are left as an exercise.
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Exercises

8.1 Consider the repeated measures model (8.1) and assume the constraints
de�ned by (8.4). If the covariance are known, show that

b� =

 
GX
g=1

�
ng�

�1
g

�!�1 GX
g=1

�
ng�

�1
g Yg

�
, b�g = Y g � b� ,

�̂ =

 
GX
g=1

ng�
�1
g

!�1 GX
g=1

�
ng�

�1
g

�
Yg � Y g1

��
;

and bg = Yg � Y g:1� �̂
are the MLEs of location parameters of the model. If the covariance matrices
are unknown, give the MLEs of covariances and hence the MLEs of location
parameters.

8.2 Consider again model (8.1) with the known covariance matrices. Show
that the MLEs of location parameters are also unbiased estimates.

8.3 Consider the repeated measures problem with two treatment groups.
Assume model (8.1) with unequal group variances. Consider the left-sided
hypotheses of the form

H0 : �g1 � �g2 � �0:
(a) Show that the generalized p-value for testing the hypothesis is given by

p = 1� EGng1+ng2�2

24 (yg1 � yg2 � �0)png1 + ng2 � 2q
1
T (

sg1
Bng1

+
sg2

(1�B)ng2 )

35 ;
where Gng1+ng2�2 is the cumulative distribution function of the Student�s t
distribution with ng1 +ng2 �2 degrees of freedom and the expectation is with
respect to the beta random variable

B =
Vg1

Vg1 + Vg2
� Beta(ng1 � 1

2
;
ng2 � 1
2

):

(b) Show that the test is unbiased.
(c) What is the generalized test for testing the right-sided hypotheses of the
form

H0 : �g1 � �g2 � �0?
(d) What is the equal-tail generalized test for testing the point null hypotheses
of the form

H0 : �g1 � �g2 = �0?

8.4 Consider again the multiple comparison problem in Exercise 8.3.
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(a) Construct a generalized pivotal quantity for interval estimation of � =
�g1 � �g2 :
(b) Show that the left-sided 100% generalized con�dence for � is of the form

� � (yg1 � yg2) + k(sg1 ; sg2);

where k = k(sg1 ; sg2) is chosen such that

EGng1+ng2�2

24 k
p
ng1 + ng2 � 2q

1
T (

sg1
Bng1

+
sg2

(1�B)ng2 )

35 = :

8.5 Consider the two-factor repeated measures model under heteroscedas-
ticity. By constructing an extreme region similar to the one used in (8.22)
or otherwise derive generalized p-values for comparing two occasion means
�1 and �2. Deduce generalized con�dence intervals for � = �1 � �2. De-
scribe how one can perform multiple comparisons of occasion means.

8.6 Consider again the two-factor repeated measures model under heteroscedas-
ticity. By taking an approach similar to the one in Exercise 8.5, obtain gen-
eralized p-values and generalized con�dence intervals for multiple comparison
of interaction e¤ects.

8.7 Show that the region of the sample space de�ned by (8.39) is an extreme
region appropriate for de�ning generalized p-values. Deduce the form of two-
sided generalized con�dence intervals based on the p-value.

8.8 Show that the generalized p-value for ANCOVA given by (8.51) can also
be expressed as a generalized F -test in which the expectation is taken with
respect to a set of beta random variables.

8.9 Assuming model (8.43), establish procedures for testing the occasion
e¤ects and the interaction between the occasion and treatment e¤ects.

8.10 Consider the data reported in Table 7.4. Carry out a repeated mea-
sures ANOVA without the assumption of equal group variances. Compare
your results with the results discussed in Chapter 7 under the assumption of
equal variances.

8.11 The table below presents a data set reported by Ho, Weerahandi,
and Hung (2002) relating to a pharmaceutical study on drug for treating
male erectile dysfunction. The objective of the study was to determine the
e¢ cacy and safety of active treatment at dose levels 0.5 mg, 1.5 mg, and 5
mg compared to placebo.



RM ANCOVA UNDER HETEROSCEDASTICITY 261

Bi-weekly response data

Time period: 1 2 3 4 5

Group Subject

1 1 29.90 29.22 30.91 31.35 29.27
1 2 29.75 30.90 29.11 31.76 29.01
1 3 29.16 32.64 31.68 30.19 30.30
1 4 29.33 27.54 29.16 33.77 31.21
1 5 29.28 29.93 31.35 29.03 30.64

2 6 27.06 32.16 31.88 35.33 38.35
2 7 32.08 38.20 21.75 29.53 33.51
2 8 20.74 23.14 34.34 33.63 29.96
2 9 30.53 31.57 35.36 33.04 24.58
2 10 31.27 21.92 41.40 38.48 22.38

3 11 30.99 30.85 32.49 33.13 33.58
3 12 32.68 30.68 30.30 33.11 32.76
3 13 30.99 33.33 31.09 31.78 31.87
3 14 31.83 31.58 33.62 34.79 33.89
3 15 34.13 31.09 33.44 31.52 29.31

4 16 24.77 27.53 28.88 34.23 35.21
4 17 35.62 32.55 29.92 26.54 28.22
4 18 36.16 31.28 33.63 40.04 33.28
4 19 33.84 29.90 26.45 30.10 30.76
4 20 28.01 30.62 30.91 25.20 28.53

(a) Perform the classical ANOVA under the assumption of equal group vari-
ances.
(b) Test the equality of main e¤ects and interactions without the assumption
of equal variances, and discuss your �ndings.
(c) Carry out all pairwise simultaneous comparisons on treatment means and
discuss your �ndings.
(d) Construct 99% con�dence intervals for each pair of treatment means.

8.12 Consider again the data set reported in Exercise 7.10. Carry out re-
peated measures ANOVA without the assumption of equal group variances.
Compare your results with the results obtained under the equal variances as-
sumption. Construct 95% simultaneous con�dence intervals for each pair of
mean e¤ects of the treatment groups.

8.13 Consider the data from Table 7.4, an example on repeated measures
reported by Crowder and Hand (1990). Without assuming equal group vari-
ances, carry out an RM ANCOVA to compare the diet supplements in a
regression setting in which the vector of response means prior to administer-
ing the diets is included as a covariate in the regression. Also test the e¤ects
of time and the interaction e¤ects.


