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Chapter 9

Crossover Designs

9.1 Introduction

Most of the repeated measures designs we used in the previous chapters are
sometimes referred to as parallel groups designs in which the subjects in each
treatment group receive the same treatment over time. When there is substan-
tial variability between subjects in such a study, it may be very di¢ cult to test
whether or not the di¤erences in response means found between the groups are
due to the di¤erences in the treatment e¤ects or due to the variability between
subjects. In the absence of period e¤ects, the among subject variation is usually
much larger than the within subject variation during the period of the experi-
ment. In marketing experiments, where the experimental units are stores selling
a certain product, the among unit variation could be extremely large, depending
on the variation in store size. In Chapter 7 we brie�y addressed this issue by
taking a set of historical store sales data to reduce the among unit variation.
In a crossover experiment involving two treatments, each subject receives both
treatments. This enables tests of the di¤erence in treatment e¤ects using the
within subject variability.
In general, crossover designs is a special class of repeated measures designs

in which all or some of the subjects receive di¤erent treatments in di¤erent time
periods. For example, in a comparison of a treatment against a placebo with
two groups of subjects, the �rst group could receive the placebo in the �rst
period and the actual treatment in the second period while the second group
receiving the treatment in the �rst period and the placebo in the second period.
With its long history [cf. Federer (1955) and Grizzle (1965)], crossover de-

signs are becoming one of the most popular designs in biomedical experiments as
they enable a better control of subject variation. Although the idea of using in-
dividual subjects as their own control is an appealing one, analysis of data from
crossover designs could be very di¢ cult. Moreover, some alternative models and
terminology used in the literature could be confusing and some published results
reported in the literature have been found to be erroneous. The terminologies
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268 CHAPTER 9. CROSSOVER DESIGNS

used in the literature, such as the �sequence,��group,�and �sequence group,�refer
to the same thing. Adding to the confusion, some authors even use alternative
terminologies such as sequence � treatment interaction in place of the period
or introduce interaction terms that are not identi�able. In a crossover study,
we need to model at least the treatment e¤ects, carryover e¤ects , and period
e¤ects . As in other repeated measures experiments, it is important to model
the period e¤ect as there might be a trend in the response variable a¤ecting
the experiment as a whole. Modeling group e¤ects and the treatment� period
interaction are also desirable when the design permits us to do so.
Simple designs and models based on unreasonable assumptions could lead

to erroneous conclusions. Except for very simple designs that rely on too many
assumptions, the solutions available in the literature are asymptotic methods or
some other approximate methods. Here we will discuss the underlying problem
involving just two treatments and two time periods, and we will demonstrate
how the generalized approach could help tackle inference problems in this �eld.
The readers interested in crossover designs involving a number of treatments
and periods are referred to Jones and Kenward (1989), Vonesh and Chinchilli
(1997), and Senn (2002). Despite much research done in this area, however, the
crossover designs remains an area requiring further research to develop methods
that do not require very large samples or unreasonable assumptions. The gen-
eralized approach provides a promising approach to developing exact methods
in such situations.

9.2 Two-Sequence Design

Consider the problem of comparing two treatments A and B in the setting of a
crossover design with just two periods. The simplest crossover design is the one
with just two sequences AB and BA in which one group of subjects receives
Treatment A in the �rst period and then Treatment B in the second period,
while the second group receives Treatment B in the �rst period and Treatment
A in the second period. It is assumed that the subjects are assigned at random
to each group to minimize the group e¤ect. The design is further illustrated by
the table below.

Group Period 1 Period 2
1 A B
2 B A

An example of a data set from a clinical trial discussed by Senn (2002) is re-
produced in Table 9.1. In that experiment, the response variable of interest
was the peak expiratory �ow (PEF), a measure of lung function, made on 13
children with moderate or severe asthma. The objective of the experiment is to
compare two treatments, a single inhaled dose of 200 �g Salbutamol (S) and 12
�g Formoterol (F ). In this experiment, a washout period of 1 day was included
between the two periods of crossover experiment.
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Table 9.1: Peak expiratory �ow (in liters per minute) measured 8 hours after
treatment

Patient # Sequence Period 1 Period 2
01 FS 310 270
04 FS 310 260
06 FS 370 300
07 FS 410 390
10 FS 250 210
11 FS 380 350
14 FS 330 365
02 SF 370 385
03 SF 310 400
05 SF 380 410
09 SF 290 320
12 SF 260 340
13 SF 90 220

Suppose that out of a total of n = n1+n2 subjects, n1 subjects are randomly
allocated to Group 1 to receive the treatment sequence AB and n2 subjects are
randomly allocated to Group 2 to receive the treatment sequence BA. In the
above example, AB = FS, BA = SF , n1 = 7 and n2 = 6. Let Y

(x)
ij(i)t denote the

observation (or average of observations) taken from j(i)th subject in ith group
at period t. Assuming only the �rst order e¤ects, let �A; �B be the treatment
means, and let �A; �B be their carryover e¤ects from Period 1 to 2. We also need
to model sequence and period e¤ects. Let � be the period e¤ect representing
the overall trend from Period 1 to Period 2. Note that we are already having a
problem with the current design. Although less important, the design allows us
to include a parameter 
 to represent a possible sequence e¤ect. As clear from
the table of expected response means shown below, even without any interaction
e¤ects, we already have six parameters to tackle based on the sample means of
response data from the four cells.

Group Sequence Period 1 Period 2
1 AB �A + 
 �B + 
 + � + �A
2 BA �B � 
 �A � 
 + � + �B

In comparing the two treatments A and B; the di¤erence in means � =
�A � �B is usually the parameter of primary importance. Without further
assumptions, the current design does not allow us to estimate even �, the pa-
rameter of interest. So assume that �A = �B = �, an assumption that we will
relax later in this chapter. In many applications this assumption might not
be very reasonable except when there is no carryover e¤ect. In other words
�A = �B = 0 is perhaps the only sensible case of the assumption. Therefore,
one may try to make the carryover e¤ects small by having a washout period
between the two periods in which the treatments are administered. A washout
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period between the two treatments might minimize the e¤ects of the carryover,
but this will not be feasible in experiments involving treatments that can a¤ect
the response for a long period or permanently (e.g. education). The idea of
having a washout period could also introduce additional complications in con-
ducting the experiment. It also does not resolve the problem of di¤erent period
e¤ects that exist in many applications.
To be more speci�c, assume the linear model

Y
(x)
ij(i)t = �x + I�+ J
 + �

(x)
ij(i)t (9.1)

for i = 1; 2; j(i) = 1; 2; : : : ; ni; x = A;B; t = 1; 2; where 
 is a nuisance para-
meter representing the sequence e¤ect,

I =

�
0 for Period 1
1 for Period 2

:;

and

J =

�
1 for Group 1
�1 for Group 2 :

Testing and interval estimation about the parameter requires some distribu-
tional assumptions as well. Following with the normal theory, we assume that
the � error terms are normally distributed with the terms corresponding to the
same subject being correlated and di¤erent subjects being independent. We do
not make further assumptions on the error structure since the current design
does not lead to a useful reduction in the number of unknown parameters of the
covariance matrix. The table below further illustrates the structure of various
e¤ects, where � is the sum of � and �, which cannot be estimated separately.

Table 9.2: Response means by sequence and period
Group Sequence Period 1 Period 2
1 AB �A + 
 �B + 
 + �
2 BA �B � 
 �A � 
 + �

In the present design, the sequence numbers and the period numbers uniquely
identify the treatment in e¤ect. Therefore, for the sake of simplicity of notation,
we shall suppress the treatment index x in the following development. More-
over, for convenience, we shall suppress the dependence of subject index on the
sequence index, and simply use j instead of j(i) with the understanding that
the values that subscript j depend on the group in question, so we can rewrite
the model as

Yijt = �x + I�+ J
 + "ij + �ijt:

We can also write the model in alternative ways keeping four parameters to
represent alternative e¤ects. Widely used alternative models all yield the same
point estimate for � = �A � �B , the quantity of primary interest, as

b� = 1

2
(Y 11 + Y 22 � Y 12 � Y 21); (9.2)



9.3. COMPARING TREATMENTS 271

where

Y it =

niP
j=1

Yijt

ni

is the sample mean computed using the observations from the ith Group and
Period t. Table below further illustrates the sample means by sequence and
period, which are unbiased estimates of the corresponding parameters appearing
in Table 9.2.

Table 9.3: Sample means by sequence and period
Group Sequence Period 1 Period 2
1 AB Y 11 Y 12
2 BA Y 21 Y 22

For example, the estimate of � given by (9.2) is established by solving the four
equations obtained by equating the cell means. As a further example, Y 11 is an
unbiased estimate of �A + 
 and Y 21 is an unbiased estimate of �B � 
, and
therefore

b
 = Y 11 � Y 21 � b�
2

(9.3)

is an unbiased estimate of the sequence e¤ect 
:

9.3 Comparing Treatments

Consider the problem of testing hypotheses concerning the parameter � = �A�
�B . Before we proceed to do testing and interval estimation of the parameters,
we need to establish necessary distributional results. If we had data only from
the AB sequence or from the BA sequence, we would have performed a paired
t-test. So it is intuitive that we should be able to device a t-test in analyzing
with both data sets as well. To derive this more formally, assume standard
bivariate normal distributions of the form

Yi = ( Yi1 Yi2 )
0 � N(�i;�i); for i = 1; 2: (9.4)

The classical approach to making exact inferences on � fails unless we assume
that the two covariance matrices are the same for the data from the two groups
in the observed order of data or when the order of data from one sequence is
reversed. As illustrated by the Balaam design undertaken in the next section,
the case of unequal covariance matrices could be easily tackled by the generalized
approach and is left as an exercise (see Exercise 9.2). Here we assume that the
two data sets follow normal distributions with the common covariance matrix

� =

�
�21 �12
�12 �22

�
:
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Then, the variance parameter we need to tackle is evident from

Var(Y 11 � Y 12) =
1

n1
a0�a

=
1

n1
�2 (9.5)

and from Var(Y 22�Y 21) = 1
n2
�2, where �2 = �21+�

2
2�2�12 and a0 = ( 1 �1 ).

As a result, we get

b� = 1

2
(Y 11 + Y 22 � Y 12 � Y 21) � N(�;

�2

4
(
1

n1
+
1

n2
)) (9.6)

To tackle �2, by pairing the data from each subject receiving the sequence AB,
we get independent distributions

yj1 = Y1j2 � Y1j1 � N(�� �; �2) for j = 1; 2; : : : ; n1;

which are also independently distributed from

y2 = Y2j2 � Y2j1 � N(�+ �; �2) for j = 1; 2; : : : ; n2:

These results imply that

(n1 + n2 � 2)S2
�2

� �2n1+n2�2; (9.7)

where

S2 =
1

n1 + n2 � 2

2X
i=1

niX
j=1

(yji � yi) (9.8)

is the pooled unbiased estimator of �2. It is now evident from 9.6 and 9.7 that
inferences on the parameter can be based on the result

b� � �
S
2

q
( 1n1 +

1
n2
)
� tn1+n2�2: (9.9)

For example, it follows from this result that

[b� � t� s
2

r
(
1

n1
+
1

n2
); b� + t� s

2

r
(
1

n1
+
1

n2
)] (9.10)

is a 100
% equal-tail con�dence interval for � = �A � �B , where t� is the
� = (1+ 
)=2 quantile of the t distribution with n1+n2� 2 degrees of freedom.
Similarly, the p-value for testing hypotheses of the form

H0 : � < �0
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is computed as

p = 1�G(
b� � �0

S
2

q
( 1n1 +

1
n2
)
); (9.11)

where G is the cdf of the t distribution with n1 + n2 � 2 degrees of freedom.
Moreover, point null hypotheses of the form H0 : � = �0 are tested using the
p-value

p = 2G(� 2jb� � �0j
S
q
( 1n1 +

1
n2
)
); (9.12)

Example 9.1. Comparing two diets

Consider the problem of comparing two diets A and B given to pigs using a
crossover design. Table 9.4 is a sample of hypothetical data on gain in weights
of a sample of 7 pigs during two periods. Four pigs receive the diet sequence
A followed by B; and the rest of the pigs receive the diet B followed by A.
Observe that in this example the gains in weight are consistently larger in the
second period. This is a period e¤ect rather than a carryover e¤ect. Consider
the problem of testing whether or not one diet is better than the other in terms
of mean gain in weight. In this type of application the best diet plan might
actually be any of the four sequences AB;BA;AA, or BB, a question we will
address later in this chapter, but here we simply compare the performance of
the two diets in a single period.

Table 9.4: Weight gains: Two-sequence case
Pig # Sequence Period 1 Period 2 y
01 AB 11.2 17.8 6.6
02 AB 12.7 18.0 5.3
03 AB 9.9 16.8 6.9
04 AB 10.4 17.4 7.0
05 BA 12.0 17.7 5.7
06 BA 11.4 17.1 5.7
07 BA 11.0 15.8 4.8

The table below shows the sample means by sequence and period. In terms of
the sample means, the di¤erence in diet means can be estimated using formula
(9.2) as

b� =
11:05 + 16:87� 11:47� 17:5

2
= �0:525:

This indicates the possibility that diet B might be better than diet A, but the
question is whether or not the result is statistically signi�cant or the estimate
is an artifact of sampling variation.
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Mean gains in weight
Group Sequence Period 1 Period 2
1 AB 11.05 17.50
2 BA 11.47 16.87

To test the underlying hypothesis, let us �rst compute the estimate of �2 using
(9.2) and the paired di¤erences shown in the last column of Table 9.4 as

S2 =
1

n1 + n2 � 2

2X
i=1

niX
j=1

(yji � yi)2

=
3�Var(6:6; 5:3; 6:9; 7:0) + 2� V ar(5:7; 5:7; 4:8)

5

=
3� 0:617 + 2� 0:27

5
= 0:478:

Now consider the hypothesis H0 : � = 0. The p-value for testing the hypothesis
is computed from (9.12) as

p = 2G(� 2jb�j
S
q
( 1n1 +

1
n2
)
)

= 2G(� 2� 0:525

0:692
q
( 14 +

1
3 )
)

= 2G(�1:987)
= 0:10;

where G is the cdf of the t distribution with 5 degrees of freedom. So we have
some evidence to reject the null hypothesis and conclude that diet B might be
better than diet A. Since the evidence is not very strong, it is advisable to
conduct the experiment with larger samples.

9.4 Four-Sequence Design

In the above treatment we had to assume that the carryover e¤ects, which are
also aliased with the period e¤ects, are equal for the two sequences. This may
not be a reasonable assumption in many applications, especially when one of the
treatments is a placebo. In fact, in many situations the drawbacks of model may
outweigh the bene�ts of the crossover design. The assumption can be avoided
and additional parameters can be introduced to account for interaction e¤ects
if we have data from the four sequences AB, BA; AA and BB. The resulting
design is known as the Balaam design [see Balaam (1968)]. Let n1; n2;n4; n4 be
the sample sizes from the four groups.
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Let Y (x)ij(i)t denote the observation (or average of observations) taken from
j(i)th experimental unit in ith group at occasion t. Assuming only �rst-order
e¤ects, let �A; �B be the treatment means in period 1, and let �A; �B be the
carryover e¤ects from period 1 to 2. Let 
it denote other main e¤ects and
interaction terms representing e¤ects such as the period e¤ects, the sequence
e¤ects, and the interactions between the treatments and the periods. Their
structure can be speci�ed in alternative ways subject to a maximum of four
unknown parameters. Although the 
it parameters are considered as nuisance
parameters in estimating main treatment e¤ects, they might also be parameters
of importance in some applications. For example, in an agricultural experiment
concerning two diet plans, the best plan might be diet A during period 1 and
diet B during period 2. Assume the linear model

Y
(x)
ij(i)t = �x + I�x + 
it + "

(x)
ij(i) + �

(x)
ij(i)t (9.13)

for i = 1; 2; 3; 4; j(i) = 1; 2; : : : ; ni; x = A;B; t = 1; 2;where "
(x)
ij(i) are random

e¤ects representing the subject variation, �(x)ij(i)t are the residual errors, and

I =

�
0 for period 1
1 for period 2.

In making inferences beyond point estimation, we further assume that "(x)ij(i) and

�
(x)
ij(i)t are normally distributed. Table below illustrates the structure of the �xed
e¤ects.

Table 9.5: Response means by sequence and period
Group Sequence Period 1 Period 2
1 AB �A + 
11 �B + 
12 + �A
2 BA �B + 
21 �A + 
22 + �B
3 AA �A + 
31 �A + 
32 + �A
4 BB �B + 
41 �B + 
42 + �B

Since we allow nuisance parameters in the two periods to be di¤erent, with-
out loss of generality as far as the main e¤ects �A; �B are concerned, we have
assumed that the carryover e¤ect in sequence 1 is the same as sequence 3 and
that of sequence 2 is the same as sequence 4. In fact the nuisance parameters
are measured as deviations from the mean e¤ects and the carry over e¤ects.
Therefore, they are normalized to satisfy the usual constraints,


11 + 
22 + 
31 + 
32 = 0;


12 + 
21 + 
41 + 
42 = 0;

and


12 + 
32 = 0;


22 + 
42 = 0;
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which is equivalent to


11 + 
21 + 
31 + 
41 = 0;


12 + 
22 + 
32 + 
42 = 0:

In the present design, the group numbers and the period numbers uniquely
identify the treatment in e¤ect. For example, i = 3; t = 2 implies that x = A.
Therefore, as in the previous section, we shall suppress the treatment index x
in the following development. Moreover as before, we suppress the dependence
of subject index on the group index, and use j instead of j(i) with the under-
standing that the values that subscript j takes depend on the group in question.
Then, model (9.13) can be expressed as

Yijt = �x + I�x + 
it + "ij + �ijt: (9.14)

9.4.1 Point estimates

First consider the problem of estimating �xed e¤ects in Table 9.6 under the
constraints assumed above. Let

Y it =

niP
j=1

Yijt

ni

be the sample means computed using observations from ith sequence and period
t. Table 9.6 presents cell means by sequence and period.

Table 9.6: Means by sequence and period
Group Sequence Period 1 Period 2
1 AB Y 11 Y 12
2 BA Y 21 Y 22
3 AA Y 31 Y 32
4 BB Y 41 Y 42

From model (9.14) we get

E(Y it) = �x + I�x + 
it:

Therefore, unbiased estimates of each of the �xed e¤ects can be obtained by
equating the cells in the expected means and sample means tables given above
and solving the equations. The unbiased estimates of �A and �B obtained by
solving the equations are

b�A = 3

8
(Y 11 + Y 31) +

1

8
(Y 22 + Y 32 + Y 21 + Y 41)�

1

8
(Y 12 + Y 42) (9.15)
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and

b�B = 3

8
(Y 21 + Y 41) +

1

8
(Y 12 + Y 42 + Y 11 + Y 31)�

1

8
(Y 22 + Y 32); (9.16)

respectively. Having estimated �A and �B , the unbiased estimates of the nui-
sance parameters and the carryover e¤ects can be obtained as

b
11 = Y 11 � b�A; b
21 = Y 21 � b�B ;b
31 = Y 31 � b�A; b
41 = Y 41 � b�B ;
b
12 = �b
32 = 1

2
(Y 12 � Y 32 + b�A � b�B);

b
22 = �b
42 = 1

2
(Y 22 � Y 42 � b�A + b�B);

b�A = 1

2
f(Y 12 + Y 32)� (b�A + b�B)g; (9.17)

and b�B = 1

2
f(Y 22 + Y 42)� (b�A + b�B)g: (9.18)

It is easily seen that these estimates are also the maximum likelihood estimates
.
Of special importance are parameters that arise in comparisons such as the

di¤erence in treatment means, � = �A � �B ; and the di¤erence in carryover
e¤ects, � = �A � �B . Their estimates that follow from the above equations are

b� =
(Y 11 � Y 12) + (Y 22 � Y 21) + (Y 31 + Y 32)� (Y 41 + Y 42)

4
; (9.19)

=
(Y 11 � Y 12) + (Y 22 � Y 21) + (Y 31 � Y 41) + (Y 32 � Y 42)

4

and b� = 1

2
f(Y 12 + Y 32)� (Y 22 + Y 42)g

Some of the above point estimates are valid only under the particular set
of constraints placed on the parameters 
it. Nevertheless, other widely used
normalizations yield the same estimate for the parameter of special importance,
namely � = �A � �B . Of particular interest is the case where we allow the
carryover e¤ects to be di¤erent for all four groups. In this case, we can treate
it = 
it+�x as the nuisance parameters for the second period and impose just
the two constraints, namely


11 + e
22 + 
31 + e
32 = 0e
12 + 
21 + 
41 + e
42 = 0: (9.20)

It is easily seen that in this case the point estimates of the treatment means
become b�A = 1

4
(Y 11 + Y 22 + Y 31 + Y 32) (9.21)



278 CHAPTER 9. CROSSOVER DESIGNS

and b�B = 1

4
(Y 12 + Y 21 + Y 41 + Y 42): (9.22)

Clearly these estimates also yield the same estimate as before for � = �A � �B .
Obviously, all �xed e¤ects of interest, including the individual means and

the di¤erences in means, can be expressed as

b� = 4X
i=1

2X
j=1

aijY ij ; (9.23)

where aij are known constants as speci�ed above. Therefore, it is convenient
to develop distributional results for general values of aij before we undertake
special cases.

9.5 Distributional Results

The classical approach does not provide exact inferences beyond point estima-
tion for � and Weerahandi and Peterson (2003) showed how the generalized
approach could be taken in this context. Before we could proceed to do testing
and interval estimation of parameters of interest, we need to establish necessary
distributional results. Notice from Model (9.13) that it does not yield any re-
duction in the number of parameters in the covariance matrix for the data from
Group 1 and Group 2. In other words the covariance matrix is unstructured
and hence AB and BA data sets follow standard bivariate models of the form

Yi � N(�i;�i); i = 1; 2: (9.24)

We can make inferences on � regardless of whether or not the covariance matrices
are equal. Here we develop testing procedures without assuming the equality of
covariances and the case of equal covariances is left as an exercise.
It is evident that

Var(a11Y 11 + a12Y 12) =
1

n1
a01�1a1 (9.25)

and that

Var(a21Y 21 + a22Y 22) =
1

n2
a02�2a2; (9.26)

where a01 = ( a11 a12 ) and a02 = ( a21 a22 ) are 2 � 1 vectors of known
constants. Notice also that model 9.13 does yield structured covariance matrices
for the data from Group 3 and Group 4. Let YA and YB be the random vectors
representing the data from these groups following the sequences AA and BB
respectively. Then it follows from the one factor repeated measures results that

YA � N(�AA;
�
�2A + �

2
A �2A

�2A �2A + �
2
A

�
)
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and that

YB � N(�BB ;
�
�2B + �

2
B �2B

�2B �2B + �
2
B

�
):

We are not making any assumptions such as the equality of variance compo-
nents, which are unnecessary and unreasonable when we have allowed unequal
interaction e¤ects and carryover e¤ects. Now it is evident that

Var(a31Y 31 + a32Y 32) =
1

n3
[(a231 + a

2
32)�

2
A + (a31 + a32)

2�2A) (9.27)

and that

Var(a41Y 41 + a42Y 42) =
1

n3
[(a241 + a

2
42)�

2
B + (a41 + a42)

2�2B): (9.28)

Of special importance are the particular cases

Var(Y 31 + Y 32) =
2

n3
(�2A + 2�

2
A) (9.29)

and
Var(Y 41 + Y 42) =

2

n4
(�2B + 2�

2
B); (9.30)

which imply that

b� � N(�; 1
16
(
�21
n1
+
�22
n2
)+

1

8n3
(�2A + 2�

2
A) +

1

8n4
(�2B + 2�

2
B); (9.31)

where �21 = a0�1a and �22 = a0�2a, and a0 = ( 1 �1 ) . Since the variance
components appearing in (9.31) are unknown parameters, they also need to be
tacked by some statistics.
To handle the variance covariance matrix �; consider the samples from the

�rst two groups following a multivariate distribution of the form (9.24).

Y1j =
�
Y1j1 Y1j2

�
v N(�AB ;�1) ; j = 1; 2; : : : ; n1

and
Y2j =

�
Y2j1 Y2j2

�
v N(�BA;�2) ; j = 1; 2; : : : ; n2;

where �AB = (�A + 
11 �B + 
12 + �A)
0 and �BA = (�B + 
21 �A + 
22 +

�B)
0. Then, it is known from the theory of sampling from multivariate normal

distributions that

S1 =

n1X
j=1

(Y1j�Y1)(Y1j�Y1)
0�W(n1 � 1;�1) (9.32)

and that

S2 =

n2X
j=1

(Y2j�Y2)(Y2j�Y2)
0�W(n2 � 1;�2); (9.33)
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where Yi =
n1P
j=1

Yij=ni. Moreover, S1;Y1, S2, and Y2 are all independently

distributed. In particular, (9.32) and (9.33) imply that

Wi =
a0Sia

a0�ia
=
Sii
�2i

� �2ni�1 for i = 1; 2: (9.34)

Note that Sii=(ni�1) terms are also the same as the variance of the di¤erences
of the paired data of the �rst two groups.
De�ne

Y 3j =
2X
t=1

Y3jt=2 ;

Y 3t =

n3X
j=1

Y3jt=2 ;

and

Y 3 =

n3X
j=1

Y 3j=n3:

From the one-factor repeated measures model we can deduce appropriate statis-
tics and distributions on which inferences of �2A and �

2
A could be based. Recall

from Section 7.2 that the appropriate statistics are

S31 =
2X
t=1

n3X
j=1

(Y3jt � Y 3j � Y 3t + Y 3)2

and

S32 = 2

n3X
j=1

(Y 3j � Y 3)2; (9.35)

and their distributions are given by

U3 =
S31
�2A

� �2n3�1 (9.36)

and

V3 =
S32

�2A + 2�
2
A

� �2n3�1; (9.37)

respectively, where Similarly, in terms of various sample means as de�ned above,
the variance components �2B and �

2
B can be handled by using the sums of squares

S41 =
2X
t=1

n4X
j=1

(Y4jt � Y 4j � Y 4t + Y 4)2;
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and

S42 = 2

n4X
j=1

(Y 4j � Y 4)2

having the distributions

U4 =
S41
�2B

� �2n4�1 (9.38)

and

V4 =
S42

�2B + 2�
2
B

� �2n4�1: (9.39)

Moreover, these random variables are independently distributed.

9.6 Testing and Interval Estimation

We are now in a position to make inferences, beyond point estimation, on the
parameters of the Balaam design. Of special interest are the problems of com-
paring of treatments, comparing the carryover e¤ects, and making inferences
about individual treatment means. Inferences on the variance components and
the interactions are also of some interest. Although we have fairly simple distri-
butional results as outlined above, the classical approach fails to provide tests
and con�dence intervals based on exact probability statements. Despite the that
the 2-treatment, 2-period Balaam design is the simplest crossover design allow-
ing unequal carryover e¤ects, there are only asymptotic and other approximate
methods available in the literature for this problem. The generalized approach
allows us to make inferences about any of the parameters. The approach is
illustrated below with its application to some important parameters.

9.6.1 Comparing treatments

To compare the two treatments, �rst consider the problem of testing hypotheses
of the form

H0 : � � �0;

where � = �A � �B . The Z statistic that follows from (9.31), namely

Z =
b� � �0q

1
16 (

�21
n1
+

�22
n2
)+ 1

8n3
(�2A + 2�

2
A) +

1
8n4
(�2B + 2�

2
B)
� N(0; 1); (9.40)

is a standard normal random variable that we can use to test H0 if the variance
components were known. When they are unknown, the substitution method
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suggests that the appropriate generalized p-value for testing H0 is given by

p = Pr(Z � (y11 � y12) + (y22 � y21) + (y31 + y32)� (y41 + y42)� 4�0q
s11
n1W1

+ s22
n2W2

+ 2s32
n3V3

+ 2s42
n4V4

)

= 1� E�( �y � 4�0q
s11
n1W1

+ s22
n2W2

+ 2s32
n3V3

+ 2s42
n4V4

); (9.41)

where �y = (y11 � y12) + (y22 � y21) + (y31 + y32) � (y41 + y42), � is the cdf
of the standard normal distribution, the expected value is taken with respect
to the independent random variables W1;W2; V3; V4, and the lower case letters
of sample means and sums of squares denote the observed values of the corre-
sponding random variables. That (9.41) is the probability of an extreme region
is evident when the region de�ned by (9.41) is expressed in the form8>><>>:

Yjf(Y 11+Y 22+Y 31+Y 32)�(Y 12+Y 21+Y 41+Y 42)g�4�0r
(
�21
n1
+
�21
n2
)+ 2

n3
(�2A+2�

2
A)+

2
n4
(�2B+2�

2
B)

� f(y11�y12)+(y22�y21)+(y31+y32)�(y41+y42)g�4�0r
(
�21
n1

s11
S11

+
�22
n2

s22
S22

)+
2s32
n3S32

(�2A+2�
2
A)+

2s42
n4S42

(�2B+2�
2
B)

9>>=>>; :
Moreover, the probability of the extreme region increases with deviations from
the null hypothesis implying that the test given by (9.41) is unbiased. This
type of integral are well-behaved and hence is easily evaluated by numerical
integration. The p-value can also be well approximated by simulating a large
set of chi-squared random numbers and then estimating the expected value in
(9.41) by the sample mean of the corresponding quantity.
Procedures for testing point null hypotheses of the form H0 : � = �0 could

be deduced from the p-value given by (9.41) for one-sided hypotheses. In this
case, too small values as well as too large values of the generalized test variable
implied by (9.41) constitute the extreme region. From the symmetry of the Z
variable, we can thus deduce [cf. Weerahandi (1995)] the generalized p-value for
testing H0 as

p = 2E�(
�j�y � 4�0jq

s11
n1W1

+ s22
n2W2

+ 2s32
n3V3

+ 2s42
n4V4

); (9.42)

The generalized con�dence intervals for � are derived from the generalized
pivotal quantity given by the substitution method or deduced from the gener-
alized p-value. For example, the 95% symmetric generalized con�dence interval
of � implied by (9.41) is of the form [(�y� k)=4; (�y+ k)=4], where k is chosen
such that

E�(
kq

s11
n1W1

+ s22
n2W2

+ 2s32
n3V3

+ 2s42
n4V4

) = 0:975:

Example 9.2. Comparing two diets (continued)

Consider again the problem of comparing two diets A and B given to pigs by
means of a crossover design. Now suppose some data become available from the
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sequences AA and BB as well so that we have a complete data set from the four
sequence Balaam design. Table 9.7 is a sample of hypothetical data on gain in
weights of a sample of 13 pigs during the two periods.

Table 9.7: Weight gains: Four-sequence case
Pig # Sequence Period 1 Period 2 y
01 AB 11.2 17.8 6.6
02 AB 12.7 18.0 5.3
03 AB 9.9 16.8 6.9
04 AB 10.4 17.4 7.0
05 BA 12.0 17.7 5.7
06 BA 11.4 17.1 5.7
07 BA 11.0 15.8 4.8
08 AA 11.6 16.7 5.1
09 AA 10.9 17.0 6.1
10 AA 11.7 16.8 5.1
11 BB 12.0 17.9 5.9
12 BB 11.4 17.7 6.3
13 BB 12.4 18.4 6.0

Mean gain in weights by sequence and period, on which we can base the
point estimation of parameters, are also shown below followed by Table 9.7. Of
special interest is the di¤erence in mean diet e¤ects estimated as

b� =
(Y 11 � Y 12) + (Y 22 � Y 21) + (Y 31 � Y 41) + (Y 32 � Y 42)

4

=
�6:45 + 5:40� 0:53� 1:17

4
= �0:688

Mean gains in weight

Group Sequence Period 1 Period 2
1 AB 11.05 17.50
2 BA 11.47 16.87
3 AA 11.40 16.83
4 BB 11.93 18.00

As in Example 9.1, the point estimate of � suggests the possibility that diet
B is better than diet A. To test the signi�cance of the estimate, consider the
hypothesis H0 : � = 0 that there is no di¤erence between the mean e¤ects of
the two diets. To test this hypothesis using the generalized p-value given by
(9.41), let us �rst compute various sums of squares of deviations appearing in
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the formula as

s11 = 3�Var(6:6; 5:3; 6:9; 7:0)
= 1:85;

s22 = 2�Var(5:7; 5:7; 4:8)
= 0:54

s32 = 2� 2�Var(11:6 + 16:7
2

;
10:9 + 17

2
;
11:7 + 16:8

2
)

= 0:093;

s42 = 2� 2�Var(12 + 17:9
2

;
11:4 + 17:7

2
;
12:4 + 18:4

2
)

= 0:723:

Now we can compute the generalized p-value as

p = 2E�(
�4 � 0:688q

1:85
4W1

+ 0:54
3W2

+ 2�0:093
3V3

+ 2�0:723
3V4

);

= 2E�(
�2:752q

0:4625
W1

+ 0:18
W2
+ 0:062

V3
+ 0:482

V4

);

= 0:014

where the expectation is computed using 10,000 random digits generated from
the independent chi-squared random variables

W1 � �22;W2 � �22; V3 � �22; andV4 � �22:

With this p-value we have fairly strong evidence to conclude that diet B is better
than diet A.

In this type of application it is possible that change of diet from one period
to the next is the best diet plan in maximizing the total gain in weight. If total
gain in weight is the quantity of interest in this example, then the underlying
problem is nothing but a classical ANOVA problem. In this case, various tests
could be based on the data shown in the table below.
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Total weight gains by diet plan
Pig # Sequence Weight Gain
01 AB 29.0
02 AB 30.7
03 AB 26.7
04 AB 27.8
05 BA 29.7
06 BA 28.5
07 BA 26.8
08 AA 28.3
09 AA 27.9
10 AA 28.5
11 BB 29.9
12 BB 29.1
13 BB 30.8

Estimated mean gains in weight due to the four diet plans AB;BA;AA, and BB
are 28.55, 28.33, 28.23, and 29.93 respectively, indicating no clear winner. In
fact the p-value of the classical F -test for testing the equality of four diet plans
is 0.38 and that of the generalized F -test is 0.23. Therefore, we do not have
su¢ cient evidence to reject the null hypothesis of equal e¤ects and proceed to
multiple comparisons. However, we know from the above results that the mean
e¤ect of Diet B is signi�cantly better than that of A, and so the diet plan BB
should be recommended.

9.6.2 Comparing carryover e¤ects

Now consider the problem of making inferences about the di¤erence in the two
carryover e¤ects, namely � = �A � �B . From the distributional results of the
previous section, we can obtain the distribution of its point estimate as

b� =
(Y 12 + Y 32)� (Y 22 + Y 42)

2

� N(�;
1

4
(
�1(22)

n1
+
�2(22)

n2
+
(�2A + �

2
A)

n3
+
(�2B + �

2
B)

n4
)); (9.43)

where �i(22) is the lower diagonal element of the matrix �i for i = 1; 2. The nui-
sance parameters �2A; �

2
A; �

2
B ; �

2
B could be tackled as before using the statistics

and distributions given by(9.36), (9.37), and (9.38). The remaining two para-
meters should be tackled using the sample variances of the data from the second
cells of Group 1 and Group 2, say S21 = S1(2)=(n1� 1) and S22 = S2(2)=(n2� 1),
which are independently distributed as

X1 =
S1(2)

�1(22)
� �2n1�1 (9.44)
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and

X2 =
S2(2)

�2(22)
� �2n2�1; (9.45)

where

Si(2) =

niX
j=1

(Yij2 � Y i2)2; i = 1; 2:

As in the previous section, we can obtain the generalized p-value for testing
hypotheses of the form

H0 : � � �0;

based on the Z statistic

Z =
2(b� � �0)q

�1(22)
n1

+
�2(22)
n2

+
(�2A+2�

2
A)+�

2
A

2n3
+

(�2B+2�
2
B)+�

2
B

2n4

� N(0; 1): (9.46)

Now it is clear that the generalized p-value based on above statistics is given by

p = Pr(Z � (y12 + y32)� (y22 + y42)� 2�0p
f(X1; X2; V3; V4; U3; U4)

);

= 1� E�((y12 + y32)� (y22 + y42)� 2�0p
f(X1; X2; V3; V4; U3; U4)

); (9.47)

where � is the cdf of the standard normal distribution,

f(X1; X2; V3; V4; U3; U4) =
s1(2)

n1X1
+
s2(2)

n2X2
+

s32
2n3V3

+
s31
2n3U3

+
s42
2n4V4

+
s41
2n4U4

;

and the expected value is taken with respect to the independent random vari-
ables X1; X2; V3; V4; U3; U4. It is straightforward to deduce generalized con�-
dence intervals for � and is left as an Exercise.



9.6. TESTING AND INTERVAL ESTIMATION 287

Exercises

Exercise 1 Consider a linear model of the form (9.1) and assume that there is
no carryover e¤ect.

(a) Derive an unbiased estimate of � , the period e¤ect,
(b) Show that it is also the same as the MLE of �,
(c) Construct a 95% con�dence interval for �.

Exercise 2 Consider the linear model (9.1) and assume that the data from
each group follows a bivariate normal distribution. When the covariance ma-
trices of the two distributions are not equal, establish generalized procedures for
testing hypotheses concerning �, the di¤erence in the two treatment means. Also
establish generalized con�dence intervals for �.

Exercise 3 Making the same assumptions as in the previous exercise, construct
generalized tests and generalized con�dence intervals for �, the sum of the com-
mon carryover e¤ect and the period e¤ect.

Exercise 4 Consider the data set in Table 9.1. Test the hypothesis that there
is no di¤erence in the two treatments. Construct left-sided 95% con�dence in-
tervals for the parameters � and � when the two covariance matrices are equal.

Exercise 5 Consider again the data set in Table 9.1. Construct 95% con�-
dence intervals for the parameters � and � when the two covariance matrices
are unequal.

Exercise 6 Consider the data set in Table 9.4. Construct left-sided 95% con-
�dence intervals for � and � when the two covariance matrices are equal.

Exercise 7 Consider again the data set in Table 9.4. Construct 95% con�dence
intervals for � and � when the two covariance matrices are unequal.

Exercise 8 Consider the generalized p-value given by (9.41). By de�ning a set
of independent random variables

B1 =
W1

W1 +W2
� Beta(n1 � 1

2
;
n2 � 1
2

);

B2 =
W1 +W2

W1 +W2 + V3
� Beta(n1 + n2 � 2

2
;
n3 � 1
2

);

B3 =
W1 +W2 + V3

W1 +W2 + V3 + V4
� Beta(n1 + n2 + n3 � 3

2
;
n4 � 1
2

);

and
X =W1 +W2 + V3 + V4 � �2n1+n2+n3+n4�4;
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show that the generalized p-value can be expressed as an average of t probabilities
as

p = 1� EFT

0@ (�y � 4�0)
p
(n1 + n2 + n3 + n4 � 1)q

s11
n1B1B2B3

+ s22
n2(1�B1)B2B3

+ 2s32
n3(1�B2)B3

+ 2s42
n4(1�B3)

1A ; (9.48)
where FT is the cdf of the t distribution with n1 + n2 + n3 + n4 � 4 degrees of
freedom and the expectation is taken with respect to the Beta random variables
B1, B2, and B2.

Exercise 9 Express the test based on the generalized p-value (9.47) as a gen-
eralized t-test.

Exercise 10 Find a generalized pivotal quantity for constructing interval es-
timates for the di¤erence in carryover e¤ects � = �A � �B. Construct 95%
generalized con�dence intervals for � based on the generalized pivotal.

Exercise 11 Consider the two treatment, four sequence Balaam design and
assume model (9.13). Establish generalized tests and generalized con�dence in-
tervals for the treatment e¤ects �A and �B.

Exercise 12 Consider again the two treatment, four sequence Balaam design
and assume model (9.13). Establish generalized tests and generalized con�dence
intervals for the carryover e¤ects �A and �B.

Exercise 13 Consider again the two treatment, four sequence Balaam design
and assume model (9.13). Assuming that �1 = �2, establish procedures for
making inferences about the di¤erence in treatment means and carryover e¤ects.

Exercise 14 Consider the data set in Table 9.7. If �1 = �2,

(a) test the hypothesis that there is no di¤erence in treatment means,
(b) construct 95% equal-tail generalized con�dence intervals for the di¤erence
in treatment means,
(c) construct a 95% equal-tail generalized con�dence interval for the di¤erence
in carryover e¤ects.

Exercise 15 Consider again the data set in Table 9.7. Without assuming that
the covariance matrices �1 and �2 are equal

(a) test the hypothesis that there is no di¤erence in carryover e¤ects,
(b) construct 95% left-sided generalized con�dence intervals for the di¤erence in
treatment means,
(c) construct a 95% right-sided generalized con�dence interval for the di¤erence
in carryover e¤ects.



Chapter 10

Growth Curves

10.1 Introduction

What is commonly known as growth curves in statistical literature is a spe-
cial class of multivariate models with a special covariance structure. Some ap-
proaches taken in growth curves also lead to a special class of mixed models. In
biopharmaceutical applications they deal with groups of subjects observed over
time. Hence, this is also a problem of repeated measures. However, in the partic-
ular class of growth curves, a certain parametric model is assumed for the growth
of the response variable, the quantity on which measurements are taken. The
change of the response variable over time is modeled by means of a design ma-
trix, a polynomial growth curve, in particular. To be speci�c, �rst consider the
case of one group of subjects, such as a cohort of babies observed over time. The
observed quantity tracked over time in this case can be the heights or weights of
babies. When one studies the growth curves by groups of subjects, the groups in
this case might be de�ned in terms of sex, ethnicity, geographical area, hospital,
and so on.
Consider a set of repeated observations taken from subjects of an experiment

at a set of common time points. The time points are not necessarily equally
spaced. For example, in observing a cohort of babies over time, one could �rst
take the observations every week, then every month, and �nally every year.
Table 10.1 below (from Elston and Grizzle, 1962) provides a widely referred to
and widely analyzed example in the literature on growth curves. In this example
a group of 20 boys were observed at four ages and the quantity of interest was
their ramus heights.
The response variable here is the ramus height and the problem is to make

statistical inference about the growth of ramus heights as a function of age and
one may wish to model its growth by a polynomial of some order. Figure 10.1
provides a pro�le plot of the response variable, the ramus height, as a function
of the age of sample subjects. It seems that in this application, a linear growth
curve is appropriate for the average child as well as for individual children.

289
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Table 10.1: Ramus heights (in mm) of 20 boys
Boy No. Age (years)

8.0 8.5 9.0 9.5
1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4
10 45.0 47.0 47.3 48.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8

Moreover, in this application the slope as well as the intercept of growth curves
seem to vary substantially from one individual to another, something that should
be modeled in analyzing the data.

In the above example there is only one group of subjects under study. More
generally we may have to deal with a number of groups of subjects studied over
time and the problem of interest might be to compare the mean growth curves
of groups. Table 10.2, a data set from Grizzle and Allen (1969) reproduced
below, provides an example of a growth curves problem involving four groups
of subjects observed at 7 time points. In this example, the data represents the
coronary sinus potassium-mil equivalents per liter by time measured in minutes
after occlusion. The Group 1 is the control group and groups are three treatment
groups as described in Grizzle and Allen (1969).
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Figure 10.1: Ramus heights by age of childred

Table 10.2 (continued): Treatment dog response after occlusion
Time(minutes): 1 3 5 7 9 11 13

Dog Group Y1 Y2 Y3 Y4 Y5 Y6 Y7
10 2 3.4 3.4 3.5 3.1 3.1 3.7 3.3
11 2 3.0 3.2 3.0 3.0 3.1 3.2 3.1
12 2 3.0 3.1 3.2 3.0 3.3 3.0 3.0
13 2 3.1 3.2 3.2 3.2 3.3 3.1 3.1
14 2 3.8 3.9 4.0 2.9 3.5 3.5 3.4
15 2 3.0 3.6 3.2 3.1 3.0 3.0 3.0
16 2 3.3 3.3 3.3 3.4 3.6 3.1 3.1
17 2 4.2 4.0 4.2 4.1 4.2 4.0 4.0
18 2 4.1 4.2 4.3 4.3 4.2 4.0 4.2
19 2 4.5 4.4 4.3 4.5 5.3 4.4 4.4
20 3 3.2 3.3 3.8 3.8 4.4 4.2 3.7
21 3 3.3 3.4 3.4 3.7 3.7 3.6 3.7
22 3 3.1 3.2 3.2 3.1 3.2 3.1 3.1
23 3 3.6 3.5 3.5 4.6 4.9 5.2 4.4
24 3 4.5 5.4 5.4 5.7 4.9 4.0 4.0
25 3 3.7 4.4 4.4 4.2 4.6 4.8 5.4
26 3 3.5 5.8 5.8 5.4 4.9 5.3 5.6
27 3 3.9 4.1 4.1 5.0 5.4 4.4 3.9
28 4 3.1 3.5 3.5 3.2 3.0 3.0 3.2
29 4 3.3 3.2 3.6 3.7 3.7 4.2 4.4
30 4 3.5 3.9 4.7 4.3 3.9 3.4 3.5
31 4 3.4 3.4 3.5 3.3 3.4 3.2 3.4
32 4 3.7 3.8 4.2 4.3 3.6 3.8 3.7
33 4 4.0 4.6 4.8 4.9 5.4 5.6 4.8
34 4 4.2 3.9 4.5 4.7 3.9 3.8 3.7
35 4 4.1 4.1 3.7 4.0 4.1 4.6 4.7
36 4 3.5 3.6 3.6 4.2 4.8 4.9 5.0



292 CHAPTER 10. GROWTH CURVES

Table 10.2: Control dog response after coronary occlusion
Time(minutes): 1 3 5 7 9 11 13

Dog Group Y1 Y2 Y3 Y4 Y5 Y6 Y7
1 1 4.0 4.0 4.1 3.6 3.6 3.8 3.1
2 1 4.2 4.3 3.7 3.7 4.8 5.0 5.2
3 1 4.3 4.2 4.3 4.3 4.5 5.8 5.4
4 1 4.2 4.4 4.6 4.9 5.3 5.6 4.9
5 1 4.6 4.4 5.3 5.6 5.9 5.9 5.3
6 1 3.1 3.6 4.9 5.2 5.3 4.2 4.1
7 1 3.7 3.9 3.9 4.8 5.2 5.4 4.2
8 1 4.3 4.2 4.4 5.2 5.6 5.4 4.7
9 1 4.6 4.6 4.4 4.6 5.4 5.9 5.6

Growth curves can be analyzed under alternative assumptions on the covari-
ance structure. For a discussion of various covariance structures and resulting
procedures, the reader is referred to Lee (1982, 1991). Analysis of growth curves
under unstructured covariance structures were �rst studied by such authors as
Pottho¤ and Roy (1964), Rao (1965, 1967), and Grizzle and Allen (1969). In
that treatment, the model structure and analysis were carried out in the context
of Multivariate Analysis (MANOVA) and Generalized Multivariate Analysis of
Variance (GMANOVA). Later developments such as that in Lindley and Smith
(1972), Fearn (1975), and Laird and Ware (1982) took a di¤erent approach
involving random coe¢ cient regression models and mixed e¤ects models. This
chapter provides an overview of each of these models with greater details on the
latter approach leading to structured covariance matrices, a class of problems re-
quiring further research in which generalized inference has the promise to yield
solutions with better power and size performance.

10.2 Growth Curve Models

Consider one or more groups of subjects or experimental units on which we have
a set of repeated measures on the response variable. The growth of the response
variable is to be modeled in terms of a design matrix. In some applications the
design matrix may be formed in terms of the time t, at which the measurement
is taken. Suppose there are N subjects and they are observed at T time points,
say t1; t2; : : : ; tT ; which are not necessarily equally spaced. Let Yit; i = 1; : : : ; N ;
t = t1; t2; : : : ; tT denote the observation taken on subject i at time t. Let
Yi be the T � 1 vector of responses obtained from subject i,
Y be the N � T matrix of all responses,
Bt be a p� 1 vector of covariates at time point t,
X = B0 be the T�p within subject design matrix constructed from covariates.

For example, in polynomial growth curves B
0

t = (1; t; t2; : : : ; tp�1) and in turn
X is constructed with the times t1; t2; : : : ; tT that t takes on.
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Assuming a linear regression model for the growth curve of each subject we
have

Yi = X�i + �i , (10.1)

where �i is a p� 1 vector of unknown parameters, the coe¢ cients of regression
models and �i; i = 1; : : : ; N; are N independent T � 1 error vectors with some
covariance matrix �. The error vectors are assumed to be normally distributed.
If the parameter vectors are all di¤erent with no structure relating them, then
this is just a problem that can be handled by conventional regression procedures.
In the context of growth curves, the coe¢ cient vectors have a certain structure.
For example, they may all be the same or same within all subjects within a group
but possibly di¤erent among groups.
Being a special case of repeated measures problems that we discussed in pre-

vious chapters, di¤erent subjects could belong to the same or di¤erent treatment
groups. So, we need to setup a between subject design matrix to represent such
structures and incorporate it in the model. Pottho¤ and Roy (1964) formulated
a general model with a matrix A representing the between subject design matrix
as

Y = A
B+ �

= A
X0 + � , (10.2)

where Y = (Y0
1;Y

0
2; : : : ;Y

0
N )

0, A is a full rank matrix of dimension N � q, and

 is a q � p matrix of parameters formed by �i vectors. This model is known
as the Generalized Multivariate Analysis of Variance Model and is abbreviated
as GMANOVA. With the distributional assumption for error terms made above,
we have the matrix normal distribution,

� � NNT (0;�
 IN ) . (10.3)

With polynomial growth curves, the matrix X has the form

X0 =

0BBBBBBB@

1 1 1 : : : 1
t1 t2 t3 : : : tT
t21 t22 t23 : : : t2T
t31 t32 t33 : : : t3T
...

...
...

...
...

tp�11 tp�12 tp�13 : : : tp�1T

1CCCCCCCA
. (10.4)

In general, elements of X are regressors. Its elements could also be binary
indicators representing within subject main e¤ects and interactions.. If p = T
and X = I; any GMANOVA problem reduces to a MANOVA problem, and if
p < T , then the model has a fewer number of unknown parameters compared to
a MANOVA due to the assumed structure.
The above models could be used in formulating inference procedures concern-

ing parameter vectors of one group or a number of groups of subjects. In case
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of repeated measurements from a random sample of subjects following a single
growth curve, model (10.1) reduces to

Yi = X� + �i for all i: (10.5)

In this case, the model can be rewritten in form (10.2) by de�ning

A = 1 and 
 = �0; (10.6)

where 1 is a N�1 vector of 1s. Even in the one group case, A could be a matrix
of data on a set of explanatory variables. For example, if a is an explanatory
variable representing the age of subjects, then A is a matrix of the form

A =

0BBB@
1 a1
1 a2
...

...
1 an

1CCCA
To provide the form of A and 
 for problems of comparing parameter vectors

of a number of groups, suppose there are G groups and gth group has ng subjects
so that

P
ng = N . Assume without loss of generality that the index i for subjects

belonging to a certain group occurs next to each other. Then, the equivalent two
forms of the model can be written explicitly. Model (10.1) can then be written
as

Yi = X�g + �i for i�g (10.7)

and model (10.2) remains valid with q = G, when the between-subject design
matrix and the parameter matrix de�ned are as

A =

0BBB@
1n1 0n1 : : : 0n1
0n2 1n2 : : : 0n2
...

...
...

...
0nG 0nG : : : 1nG

1CCCA , (10.8)

and


 =

0BBB@
�01
�02
...
�0G

1CCCA ;
where 1ni is a ni� 1 vector of 1s and 0ni is a ni� 1 vector of 0�s. Here also A
is allowed to be quite general. For example, in place of 1ni in (10.8) we could
use matrices of data on some explanatory variables.
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10.3 Inference with Unstructured Covariances

Pottho¤ and Roy (1964), Khatri(1966), Rao (1965, 1967), and Grizzle and
Allen (1969) were among pioneering researchers who developed inference meth-
ods for the above models. Here we provide an overview of some of the main
results and the reader is referred to the above articles for details and for addi-
tional results.
First consider the problem of point estimation of parameters of model (10.2)

with the distribution of the error term � given by (10.3). Here we do not address
the question of prediction based on growth curves. The readers interested in
prediction methods in growth curves are referred to Lee and Geisser (1972a,
1972b).
De�ne

Y gt =

P
i2g
Yit

ng

and

Yg =

0BBB@
Y g1
Y g2
...

Y gT

1CCCA :
In the particular case of model (10.7), it is intuitive that the covariance matrix
� can be estimated by the pooled sample covariance matrix S=(N � G), which
takes advantage of the data available from all G groups. In turn, the parameter

 matrix can be estimated by GLSE as

b
 = YS�1X(X0
S�1X)

�1
; (10.9)

where S =
GP
g=1

P
i�g

(Yi �Yg)(Yi �Yg)
0 is a T � T matrix and

Y =

0BBBB@
Y
0
1

Y
0
2
...
Y
0
G

1CCCCA ; (10.10)

is a G�T matrix of T �1 sample mean vectors Yg computed from independent
observation from nj subjects in each of the G groups.

Example 10.1. The point estimates of growth curve parameters

Consider the data set in Table 10.3 involving 3 groups of subjects observed at 6
time points. Suppose linear growth curves are adequate for each of the 3 groups.



296 CHAPTER 10. GROWTH CURVES

Table 10.3: Responses of 3 groups of subjects observed at 6 time points
Time: t1 t2 t3 t4 t5 t6

Group Subject Y1 Y2 Y3 Y4 Y5 Y6
1 1 15.74 15.22 13.85 13.79 15.95 16.75
1 2 6.53 8.85 11.74 11.99 10.84 14.41
1 3 11.99 13.1 17.3 18.93 20.95 20.89
1 4 9.21 7.28 8.56 11.76 10.97 15.16
1 5 6.43 11.26 11.15 10.24 10.76 17.13
1 6 7.81 12.49 11.13 12.22 13.89 13.88
1 7 10.98 13.69 13.95 16.75 15.08 17.52
1 8 7.59 9.24 11.96 9.06 11.67 15.55
2 9 11.88 10.61 10.38 9.56 11.88 19.02
2 10 12.64 14.55 15.31 15.76 15.2 19.5
2 11 5.94 10.09 10.66 13.44 9.88 10.24
2 12 19.91 18.4 20.05 21.71 21.61 20.9
2 13 7.45 12.03 15.59 13.33 13.56 20.6
2 14 8.44 14.42 10.87 15.93 14.56 16.21
2 15 10.44 15.4 16.99 15.66 15.55 15.04
2 16 7.37 12.95 5.47 12.65 10.9 11.82
3 17 16.96 15.34 13.75 18.57 23.11 20.75
3 18 11.6 14.65 15.51 18.44 15.13 19.23
3 19 11.07 10.94 12.19 9.65 15.19 16.73
3 20 20.21 19.54 19.03 10.01 20.4 21.15
3 21 12.03 14.39 17.39 17.61 14.64 15.3
3 22 10.8 12.52 15.24 11.64 20.17 15.06
3 23 22.02 14.53 14.43 10.55 18.63 19.39
3 24 12.47 15.01 12.92 16.58 17.01 18.41

The means for the each group at the 6 time points are the pooled covariance
matrix are shown below:

Y =

0@ 9:535 11:3912 12:455 13:0925 13:7638 16:4112
10:5088 13:5563 13:165 14:755 14:1425 16:6662
14:645 14:615 15:0575 14:1313 18:035 18:2525

1A ;

S

21
=

0BBBBBB@
16:688 7:44417 7:27353 3:79836 9:85837 7:61947
7:44417 6:99782 5:74013 4:92179 6:36276 3:90188
7:27353 5:74013 11:1629 6:00876 7:62439 5:9018
3:79836 4:92179 6:00876 13:1102 6:81696 3:48661
9:85837 6:36276 7:62439 6:81696 11:7371 6:44863
7:61947 3:90188 5:9018 3:48661 6:44863 8:92281

1CCCCCCA .

Then the 3 � 2 matrix of growth curves parameters,
 estimated by applying
(10.9) is
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b
 =
0@ 9:40283 1:15992
12:0991 0:88738
12:0985 0:95336

1A :
More generally, Pottho¤ and Roy (1964) provided a class of estimates, and

Rao (1965, 1967), and Khatri(1966) independently provided speci�c estimates
such as that in (10.9) for the growth parameter vector 
 and also for the co-
variance matrix � of the model (10.2). The results of Pottho¤ and Roy (1964)
lead to exact solutions only if LSE instead of GLSE is used. It could also be em-
ployed to deduce (10.9), but the two approaches lead to di¤erent test statistics.
Here we con�ne our attention to only the exact solutions provided by Rao (1965,
1967), Khatri (1966), and Grizzle and Allen (1967), which can be presented in
a uni�ed and general manner.

10.3.1 Case of general A design matrix

Formula (10.9) is valid only for the special A matrix de�ned by (10.8). Khatri
(1966) and Rao (1965, 1967) obtained the maximum likelihood estimate (MLE)
of 
 with a general A matrix. As further illustrated by Grizzle and Allen (1967),
the estimate can be expressed as

b
 = (A0
A)

�1
A0YS�1X(X

0
S�1X)

�1
; (10.11)

where

S = Y0[IN�A(A
0
A)

�1
A0]Y: (10.12)

A proof of this result is given in Appendix B.2. In terms of the S matrix, the
MLE of � is obtained as

b� = 1

N
[S+W0Y0A(A

0
A)A

0
YW]; (10.13)

where

W = IN�S�1X(X0
S�1X0)

�1
X0: (10.14)

Moreover, Gleser and Olkin (1970) showed that b
 and b� are su¢ cient statistics
for making inferences about the parameters 
 and �. If unbiased estimates are
desired, then N appearing in the above equations should be replaced by N�q. In
particular, with model (10.7) and q = G, an unbiased estimate of the covariance
can be obtained as

b� = S

N �G . (10.15)
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It is easily veri�ed that this is the usual pooled sampled covariance matrix com-
puted from data from all G groups. Moreover, in this case notice that

A0A =

0BBB@
n1 0 � � � 0
0 n2 � � � 0
...

...
...

...
0 0 � � � nG

1CCCA
and

A0Y =

0BBB@
n1Y 11 n1Y 12 : : : n1Y 1T
n2Y 21 n2Y 22 : : : n2Y 2T
...

...
...

...
nGY G1 nGY G2 : : : nGY GT

1CCCA ;
implying, in particular, that

(A
0
A)

�1
A0Y =Y (10.16)

and hence b
 given by (10.11) reduces to GLSE given by (10.9).
10.4 Inferences on general linear contrasts

Now consider the problems of constructing con�dence regions and testing the
parameters of the general model (10.2) with unstructured covariances. As in
Chapter 6, most problems of practical importance in this context involving pa-
rameters among growth curves and within growth curves could be handled by
considering double linear combinations of the form

� = C
D , (10.17)

where C is a c � G matrix of known constants and D is a p � d matrix of
known constants, constructed using desired individual contrasts, where c � G
and d � p. For example, if the equality of growth curves, say

H0 : �1 = �2 = � � � = �G (10.18)

is the hypothesis of interest we can de�ne the required two matrices as

C =

0BBBBB@
1 �1 0 : : : 0
0 1 �1 : : : 0
0 0 1 : : : 0
...

...
... : : :

...
0 0 0 : : : �1

1CCCCCA ; D = Ip;

or as
C =

�
1G�1 �IG�1

�
, D = Ip,
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where 1G�1 is a G � 1 � 1 vector of 1�s. In this case, c = G � 1 and d = p.
Similarly to test the hypothesis of parallel polynomial growth curves with X
de�ned by (10.4) we can use (10.17) with

C =
�
1G�1 �IG�1

�
, D =

�
0
Ip�1

�
(10.19)

and to make inferences concerning an individual parameter vector, say �g, we
can de�ne

C = i0g, D = Ip, (10.20)

where ig is a G� 1 vector having a 1 as the gth element and 0�s elsewhere. In
the latter case, we have c = 1 and d = p.

10.4.1 Exact likelihood ratio test

Khatri (1966) extended the MANOVA likelihood ratio test to handle hypotheses
of the form

H0 : C
D = 0. (10.21)

At level �, the hypothesis is to be rejected if the likelihood ratio is

� =
jEj

jE+Hj < ��, (10.22)

where
E = D0(X

0
S�1X)

�1
D;

H = (D0b
0C0)F�1(Cb
D);
�� is the critical point that must be computed using the distribution of �, and
the F matrix is de�ned as

F= C[(A
0
A)

�1
+YA(S

�1�S�1X(X0
S�1X)

�1
X0S�1)Y0

A]C
0
; (10.23)

where YA = (A
0
A)

�1
A0Y. Recall that in the particular case of MANOVA

with unstructured covariances, X = D = I and F reduces to F = C(A0
A)

�1
C0.

Although one may use the asymptotic distribution of � in this case as well,
there is no need to resort to such approximations. With a bit of coding in
SAS or SPlus, one can carry out exact tests using the U distribution of the
random variable �. Without any coding, one can perform the test using the
XPro software package.
That � has a U distribution under the null hypothesis, as was the case in the

MANOVA problem considered in Chapter 6, follows from the fact that E and H
matrices having d-dimensional central Wishart distributions,

E = D0(X
0
S�1X)

�1
D ~ Wd(e;D

0(X0��1X)
�1
D) (10.24)

H = (D0b
0C0)F�1(Cb
D) ~ Wd(h;D
0(X0��1X)

�1
D);
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where h = c and e = N � T � q + p, provided that d � min(h; e). As in the
MANOVA, the necessary quantiles �� can now be found using the U distribution,

� � Ud;h;e, (10.25)

If c < d, the required condition d � min(h; e) will be violated. In this case,
the problem can be still handled by re-parametrization based on the fact that the
distributions Ud;h;e and Uh;d;e+h�d are identical. Some authors set h = min(c; d)
and provide alternative ways of evaluating the distribution of �.
As before, the probabilities and quantiles of the U distribution are calculated

by expressing it as a product of independent beta random variables as

U = B1B2 � � �Bd , where Bj � Beta(
e� j + 1

2
;
h

2
) , (10.26)

provided that e � d. In testing the equality of G growth curves, we use the U
distribution,

� � Up;G�1;N�G�T+p .
In testing whether or not the G growth curves are parallel, we use the U distri-
bution,

� � Up�1;G�1;N�G�T+p .
Also recall that when d � 2 or h � 2, the U distribution can be transformed into
an F distribution:

When d = 1,
1� �
�

e

h
� Fh;e . (10.27)

When d = 2 and h � 2, 1� �1=2
�1=2

e� 1
h

� F2h;2(e�1) . (10.28)

When h = 1,
1� �
�

e+ 1� d
d

� Fd;e+1�d . (10.29)

When h = 2 and d � 2, 1� �1=2
�1=2

e+ 1� d
d

� F2d;2(e+1�d) . (10.30)

For example, if we had planned only the comparisons of the coe¢ cients of the
�rst two groups, we can then set d = 1. Similarly, if all pairwise comparisons
of only one coe¢ cient, say the slope parameter, from all growth curves had
been planned, we can set c = h = 1. When d is large, perhaps the best way to
compute the p-value is to generate a large number of random numbers from each
of the independent beta distributions and compute the fraction of times that the
inequality in (10.22) is satis�ed. Asymptotically the statistic �(e�(d�h+1)=2)
log(�) has a chi-squared distribution with dh degrees of freedom. Although this
approximation is good for certain critical values, in this computer age there is
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Figure 10.2: Pro�le plots by time and group

no need to resort to such asymptotic results, especially in computing p-values
regardless of the observed value of the statistic.
Finally, the p-value for testing the null hypotheses of the form (10.21) in

general and the particular hypothesis (10.18) of special interest can be computed
as

p = 1� FU (�) , (10.31)

where FU is the cdf of the U distribution with d; h and e degrees of freedom. The
hypothesis could also be tested using other test statistics used in MANOVA such
as the Roy�s largest root test statistic, whose distribution could also be derived
from that of E and H. However, except in special cases, close-form solutions
are available for the test statistic de�ned in terms of the likelihood ratio (10.22)
only.

Example 10.2. Comparing growth curve parameters

Continuing with the example involving 3 groups of subjects, let us to test the
hypotheses of equal growth curves and parallel growth curves. In the latter case
we set

C =

�
1 �1 0
1 0 �1

�
; D =

�
0
1

�
.

Figure 10.2 provides pro�le plots for each of the three groups, as a function of
time. It seems that the assumption of linear growth curves is a reasonable one.
Despite fair di¤erences in point estimates of growth curve parameters computed
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in Example 10.1, given the large variances in within subject and among subject
variations, it is not clear from the �gure whether they are statistically signi�cant.
Each hypothesis can be tested using (10.21) and (10.31). For the problem of
testing for identical growth curves, the observed value of the likelihood ratio
statistic is 0.8343, with the distribution � � U2;2;17 and hence

F = 8
1� �1=2
�1=2

� F4;32 .

The observed value of the F Statistic is 0.7587. Hence the p-value for testing
equal growth curves is 0.5599 providing no evidence to reject the null hypothesis.
The observed value of the likelihood ratio for testing parallel growth curves, i.e.
the equality of the three slopes, is 0.9416. In this case, � � U1;2;17 and

F = 8:5
1� �
�

� F2;17

with the observed value of the F -statistic 0.5271. Hence, the p-value for testing
the hypothesis is .5996, which leads to the same conclusion.
Multiple comparisons of the coe¢ cients of the growth curves can also be

carried out with appropriate choice of C and D in (10.17). In this example there
seem no point in proceeding to multiple comparisons as the hypothesis of equal
growth curves was not rejected. As we will see later in this chapter, however,
the main reason for insigni�cance of di¤erences in growth curves is partly due
to the assumption of unstructured covariance matrix with too many unknown
parameters. Continuing with the analysis for the purpose of illustration, the F
statistic based on the U statistic can be employed in testing, since we have only
3 groups to compare. The appropriate values of C and D are set according to
the coe¢ cients being compared. For example, to compare the slopes of growth
curves 1 and 2 we set

C =
�
1 �1 0

�
; D =

�
0
1

�
.

If we are comparing the coe¢ cients of only one pair of growth curves, we can set
c = h = 1 and use the F statistic. If we are comparing only one coe¢ cient of
any pair of growth curves we can set d = 1 and again use the F statistic. Some
results are summarized in Table 10.4. Multiple comparisons are valid for a pair
of growth curves. Despite the fact that these are not even simultaneous tests, as
expected, no pair of growth curves have signi�cantly di¤erent parameters.

Table 10.4: Comparing individual coe¢ cients of growth curves
Testing equal intercepts Testing equal slopes

Growth Curves Observed F p-value Observed F p-value
1 and 2 2.4220 .1381 0.9407 .3457
1 and 3 2.0401 .1713 0.4555 .5088
2 and 3 0.0000 .9998 0.0402 .8436
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10.5 Simultaneous Con�dence Intervals

The above results can be employed to deduce simultaneous con�dence intervals
of double linear combinations by considering, �ab = a0C
Db, where a is a c�1
vector and b is a d � 1 vector. As in MANOVA, 100
% con�dence intervals
for a set of linear combinations of parameters can be constructed by alternative
approaches.
Khatri (1966) derived con�dence intervals based on the maximum root cri-

terion, which has a direct relationship with simultaneous con�dence intervals.
Let � = 1 � 
 be the corresponding critical level. Then the 100
% con�dence
bounds for �ab given by the maximum root method is

b�ab � � k�
1� k�

(a
0
Fa)(b

0
Eb)

�1=2
;

where b�ab = a0Cb
Db, and k� is the (1� �)th percentile of the largest root test
criterion with degrees of freedom min(c; d); (jc�dj�1)=2; and (e�d�1)=2: The
con�dence level remains valid for any number of intervals that can be deduced
from C
D. In two important special cases, namely when c = 1 or d = 1, ��
can be obtained from the F distribution. In this case, the maximum root-based
procedure is the same as the ones discussed below. This is, for instance, the case
if we had planned comparing only the parameters of two particular groups only
so that c = h = 1. Similarly, if all pairwise comparisons of only one coe¢ cient,
say the slope parameter, from all growth curves had been planned, we can set
d = 1. In these cases, a counterpart based on the U statistic also leads to an F
statistic

F =
e1
h1

1� U
U

=
e1
h1

(b�ab)2(aFa)�1
b0Eb

� Fh1;e1

and the 100
% con�dence intervals

b�ab � �
 �h1
e1
(a
0
Fa)(b

0
Eb)

�1=2
; (10.32)

where �
 is the (1 � 
)th quantile of the F distribution with h1 and e1 degrees
of freedom and

h1 = h and e1 = e if d = 1

h1 = d and e1 = e+ 1� d if h = 1:

If the F statistic has already been computed in hypotheses testing, the interval
given by (10.32) can be computed using the formula

b�ab � �
 jb�abjF�1=2:
If only a few prespeci�ed contrasts are to be tested, shorter intervals than

those given by the above methods can be obtained in terms of the t distribution
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by applying the Bonferroni method. If r tests or intervals of linear contrasts are
pre-planned, then the Bonferroni intervals of �ab are computed as

b�ab � te(1� �
2r )p
e

�
(a
0
Fa)(b

0
Eb)

�1=2
; (10.33)

where e = N � q � (T � p) is the degrees of freedom of the t distribution.
In computing con�dence intervals by applying any of the above methods, we

need to be concerned with the matrices C andD only to �gure out the appropriate
degrees of freedom and the contrasts that they can generate. Having done that,
the linear combination on which the intervals are to be constructed can be written
in terms of 
 as � = �ab = a0C
Db = c

0
d, where c = C0a is a G � 1 vector
and d = Db is a p � 1 vector. If there are no special set of contrasts directly
based on the parameters of the growth curves, then c = a and d = b. In either
case, if the linear combinations of interest is expressed as � = c0
d, the 100
%
con�dence intervals given by each of the above methods is of the form

b� � c
 [(Fd)(Ec)]1=2 ; (10.34)

where

Ed = d
0(X

0
S�1X)

�1
d

and
Fc= c[(A

0
A)

�1
+YA(S

�1�S�1X(X0
S�1X)

�1
X0S�1)Y0

A]c
0
:

With the common problem of comparing the growth curves of a number of groups,
namely with model (10.1), Fc further reduces to

Fc=
X

c2i =ni + cY(S
�1�S�1X(X0

S�1X)
�1
X0S�1)Y

0
c0 .

For example, if we are interested in the di¤erence in intercepts of the �rst two
growth curves, we apply the above formulae with,

c = ( 1 �1 0 � � � 0)

and
d = ( 1 0 0 � � � 0)0.

Example 10.3. Comparing growth curve parameters (continued)

Continuing with the example involving 3 groups of subjects, let us now construct
con�dence intervals for the di¤erences in intercepts and slopes of each pair of
growth curves. Table below shows the 95% simultaneous con�dence intervals
constructed under the assumption that intervals had been planned only for com-
paring either the intercepts or the slopes. In applying formula (10.33) to ensure
the con�dence level for all three pairs, we set r = 3: As a result, the con�-
dence interval for one interval is 98.33%. Despite the fact that the intervals are
constructed to ensure the level of only one parameter (either the slope or the
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intercept), all the con�dence intervals are still too wide and include 0 providing
no support for rejecting hypotheses of equal coe¢ cients. The di¤erence in the
two intercepts of growth curves 1 and 2 is one which is close to being signi�cant.

95% Con�dence intervals for the di¤erence in parameters
Parameter: Intercept di¤erence Slope di¤erence

Growth Curves Lower limit Upper limit Lower limit Upper limit
1 and 2 -7.2944 1.9019 -0.4733 1.0184
1 and 3 -7.7041 2.3127 -0.6058 1.0189
2 and 3 -5.3871 5.3882 -0.9398 0.8079

10.5.1 Case of one group

Recall that in the case of one group of subjects, model (10.2) and the foregoing
results remain valid. The model is equivalent to (10.5) when we set the para-
meters as A = 1 and 
 = �0. In particular, the point estimates given by (10.9)
and (10.11) and reduces to

b�=b
0= (X0
S�1X)

�1
X0S�1y , (10.35)

where y is the T�1 vector of T sample means responses from n subjects observed
at each of the time points. In this case the T � T matrix S reduces to

S =
NX
i=1

(yi � y)(yi � y)0 . (10.36)

Tests of hypotheses of the form

H0 : D
0� = 0 (10.37)

is deduced from (10.21) by setting A = 1 and C =1: In this case the H and E
matrices reduces to

E = D0(X
0
S�1X)

�1
D ~ Wd(e;D

0(X0��1X)
�1
D) (10.38)

H =
(D0b
0b
D)

F
~ Wd(1;D

0(X0��1X)
�1
D); (10.39)

where e = N � 1� T + p and F is now a scalar parameter given by

F = 1=N+y0(S
�1�S�1X(X0

S�1X)
�1
X0S�1)y:

Since h = 1 in this case, the test provided by the U statistic reduces to an F -test,
because under the null hypothesis

e+ 1� d
d

�
1� �
�

�
� Fd;e+1�d (10.40)

where � = jEj=jE+Hj.
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10.6 Mixed Models in Growth Curves

The GMANOVA treatment we studied above does not allow the covariance ma-
trix to have any special structure, as we often encounter in many growth curves
applications. Yet we assumed that each group under comparison has the same
covariance matrix and that the design matrix was the same for all subjects. A
more �exible general model which overcome such drawbacks of models of the
form (10.2) was introduced by Laird and Ware (1982) in the context of mixed
models. The general form of the linear mixed e¤ects growth curves model is

yi = Xi�i + Zibi + �i for i = 1; : : : ; N , (10.41)

where yi is the T � 1 vector of responses from ith subject, Xi is a known design
matrix of dimension T � p, Zi is another design matrix of dimension T � q, �i
is a vector of �xed e¤ects, and other variables are jointly independent random
variables distributed as

bi � Nq(0;	) (10.42)

and
�i � NT (0;�i) ,

where �i is a within-subject covariance matrix of dimension T � T and 	 is
usually a between-subject covariance matrix of dimension q � q. Of course the
model can also be rewritten in the form of a structured covariance matrix as

yi = Xi�i + ei, (10.43)

where
ei � NT (0;�i + Zi	Z

0
i).

If the parameters are all di¤erent and if the covariance matrices are known
except for a scalar parameter, they can be analyzed separately by regression meth-
ods. In more important applications of the model, some parameters are common
and some are di¤erent, especially depending on certain groups that they belong
to.
As in the previous section, now consider the particular problem that arise in

comparing G groups of subjects. In this case, denoting ith subject in group g by
i(g), assuming some common �xed e¤ects for subjects in a single group, we can
rewrite model (10.41) as

yi(g) = Xi(g)�g + Zi(g)bi(g) + �i(g) (10.44)

i(g) = 1; : : : ; ng; g = 1; : : : ; G ,

where the random variables have common within-group distributions,

bi(g) � Nq(0;	) (10.45)

and
�i(g) � NT (0;�g).
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The model is equivalent to

yi(g) = Xi(g)�g + �i(g);

where
�i(g) � NT (0;�g); �g = �g + Zi(g)	Z

0
i(g):

If �g were known or has been estimated, the parameters of the growth curves
are estimated by MLE as

b�g =
0@X

i�g

X0
i(g)�

�1
g Xi(g)

1A�1X
i�g

X0
i(g)�

�1
g yi(g): (10.46)

Usually it is assumed that the structure of matrix �g is known except for a few
parameters. For example, with independent residuals it is assumed that �g =
�2gIT . The between-subject covariance matrix 	 is treated as unstructured or
structured. In the next section we will consider an important case of the problems
in which 	 is a structured and has only one unknown parameter. When it is
unstructured, it is estimated by sample covariance using bbi(g) along with other
unknown parameters including �g iteratively. The reader is referred to Laird and
Ware (1982) for such estimation methods and for asymptotic results concerning
other types of inferences. In any case, there are no general results available for
exact inference on the parameters of model (10.44) and this is an area requiring
much research. Next we consider the problem when each covariance matrix has
a particular structure, and provide a solution to a simple, yet very important,
class of problems. The solution is obtained by taking the generalized approach.

10.7 Exact Inference under Structured Covari-
ances

When the covariance matrix of a growth curves model has a special structure,
classical approaches do not provide exact solutions to inference problems even
for a situation of a single growth curve. Hence this is an area requiring much
research. In this section, we consider one of the simplest, yet important, class of
problems involving one group of subjects and show how the generalized approach
could help �nd exact solutions. Later in this chapter we will consider the problem
of comparing a number of treatment groups. Speci�cally, let us consider the class
of compound symmetric covariance matrices, which can be derived from a linear
model with one random e¤ect as described below. This is also known as inference
problem in growth curves under intraclass correlation structure.
To derive the model under a linear structure with one random e¤ect, consider

one group of subjects following a simple linear growth curve model of the form
(10.1) [see Weerahandi and Berger (1999) for details], in which the di¤erence
in parameter vectors is a single random e¤ect associated with the subjects. For
ith subject we have
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Yit = �i +X
0
t�+�it; (10.47)

where X0
t = Vt is the p � 1 design vector, � is a p � 1 vector of parameters

common for all subjects, �i is a random e¤ect due to subjects, and �it is the
error term. Under the usual normality assumption for each random variable,
we get

�i � N(0; �2�) (10.48)

and
�it � N(0; �2e); (10.49)

where �2� and �
2
e are variance components of the model. Moreover, �i and all

�it terms are assumed to be independently distributed. Collecting data from ith
subject, the model for the T �1 vector of responses, Yi, can be written in vector
form in terms of the T � p design matrix X = V0 as

Yi = �i1T +X� + �i , (10.50)

where 1T is a T � 1 vector of 1s. It is easily seen from (10.48) that V ar(Yit) =
�2� + �

2
e and that Cov(Yit; Yit0) = �

2
�, and hence

Yi � NT (X�;�) with the covariance matrix � = �2�1T1
0

T + �
2
eIT (10.51)

This means that the covariance matrix of the observations vector has the in-
traclass structure, which is also known as the compound symmetric structure.
Notice that model (10.50) is a special case of model (10.41) with

Zi	iZ
0
i = �

2
�1T1

0

T and �i = �
2
eIT

Being a matrix with intraclass structure, the inverse � of is also an intraclass
matrix. More speci�cally,

��1 = ��2e

�
1T �

�2�
�2e + T�

2
�

1T1
0

T

�
: (10.52)

Lin and Lee (2003) considered model (10.47) under the more general intra-
class covariance matrix

� = (�1�
2
� + �2�

2
e)1T1

0

T + [(1� �1)�2� + (1� �2)�2e]IT , (10.53)

where 1 � �1 � �1=(T � 1) and 1 � �2 � �1=(T � 1). The inverse of this
matrix follows from formula (10.52).
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10.7.1 Inference with intraclass correlation structure

The problem is to make inferences about the unknown parameters � and the
variance components �2� and �

2
e. It follows from (10.51) that the maximum

likelihood estimate (MLE) of � is the weighted least-squares estimate (WLSE)

b� = (X0��1X)
�1
X0��1Y; (10.54)

which is also known as the generalized least squares estimate (GLSE) of �, where
Y=

P
Yi=N is a T � 1 vector. It is easily seen that the distribution of b� is

given by

b� � N(�;(X0��1X)
�1
=N) (10.55)

Rao (1967) showed that, if the columns of �X is a subspace of the vector space
spanned by the columns of X; then the GLSE reduces to the ordinary least-
squares estimate (OLSE), regardless of what � is. When � is as in (10.51) and
the �rst column of X is a vector of 1�s (i.e., an intercept term is present in the
growth curve model), this condition is satis�ed and consequently (10.54) reduces
to the OLSE,

b� = (X0X)
�1
X0Y (10.56)

The result is summarized by Theorem 1 below. A direct proof of this result was
given by McElroy (1967).

Theorem 1 If � is a covariance matrix with the intraclass structure and if X
is design matrix with �rst column being a vector of 1s, then

(X0��1X)
�1
X0��1Y = (X0X)

�1
X0Y:

Of course, there is no di¢ culty constructing con�dence regions or perform-
ing statistical tests concerning the parameter vector � if � is a known matrix.
But when �2� and �

2
e are unknown parameters, as usually the case, this is not

straightforward. In fact the classical approaches to the problem do not provide
exact solutions to making inferences beyond the point estimation.
Now consider the problem of making exact inferences on coe¢ cients of �,

including the problems of testing whether one or more of these regression coe¢ -
cients equals some pre-speci�ed value such as zero or one sided hypotheses such
as

H0 : �j � �j0 (10.57)

Application of asymptotic methods for testing this type of hypothesis could lead
to results with poor size performance even when the sample is large. To illus-
trate the generalized approach in testing hypotheses concerning a single slope
coe¢ cient of the growth curves, consider the particular hypothesis (10.57). The
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search for most powerful tests can be con�ned to the class of procedures based
on the su¢ cient statistics,

b�j, j = 1; � � � p;

S2e1 =
X
i

X
t

(Yit �X0
t
b��(Yi � Y ))2;

and
S2e2 = T

X
i

(Yi � Y )2;

where b�j is the jth component of b� given by (10.56), Yi denotes the sample
mean for subject i and Y is the sample mean computed from all Yit data. It
follows from (10.55) and from the literature on variance components that the
distribution of these quantities are given by

b�j � N(�j ; (X0��1X)
�1

jj

N
; (10.58)

W1 =
S2e1
�21

� �2�1 ; where �1 = N(T � 1)� p+ 1; (10.59)

and

W2 =
S2e2
�22

� �2�2 ; where �2 = N � 1 (10.60)

where �21 = �
2
e, �

2
2 = �

2
e + T�

2
� , and (X

0��1X)
�1

jj is the jjth element of the
covariance matrix (X0��1X)

�1. Lin and Lee (2003) pointed out that the distri-
butions in (10.59) and (10.60) remains valid under the more general covariance
matrix (10.53) if �21 and �

2
2 are rede�ned as

�21 = (1� �1)�2� + (1� �2)�2e;

and
�22 = �

2
1 + T (�1�

2
� + �2�

2
e):

In terms of the general parameters, de�ne

Sj(�
2
1; �

2
2) = (

X0��1X)
�1

jj

n
)
1=2 (10.61)

a well de�ned random variable involving nuisance parameters. Given the two
arguments of Sj, we evaluate it �rst by computing � and then performing the
matrix operations. To derive a test appropriate for testing (10.57) consider the
potential extreme region given by8<: b�j � �j

Sj(�
2
1; �

2
2)
�

bj � �j
Sj(�

2
1
s2e1
S2e1
; �22

s2e2
S2e2
)
=

bj � �j
Sj(

s2e1
W1
;
s2e2
W2
)

9=; , (10.62)
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where s2e1, s
2
e2, and bj are the observed values of S

2
e1, S

2
e2, and b�j, respectively.

The inequality appearing in (10.62) could also be expressed as

Z �
bj � �j

Sj(
s2e1
W1
;
s2e2
W2
)
, with Z � N(0; 1), (10.63)

Moreover, Z; W1, W2 are mutually independent, and as in other similar appli-
cations, we can also use the independent random variables Z,

W =W1 +W2 � �2� (10.64)

and
B � Beta

��1
2
;
�2
2

�
to specify the extreme region, where � = NT � p. It follows from the structure
of Sj that

Sj(k�
2
1; k�

2
2) = k

1=2Sj(�
2
1; �

2
2);

a property we can exploit to factor out W term from Sj(s
2
e1=W1; s

2
e2=W2). Not-

ing that the probability of the above inequality is an increasing function of the
parameter of interest, thus making it de�ne a true extreme region, the general-
ized p-value, the maximum probability of the extreme region, is computed as

p = Pr

 
t =

Zp
W=�

�
p
�
(bj � �j)

Sj(
s2e1
B ;

s2e2
1�B )

!
(10.65)

= 1� E
(
G�

"
p
�
(bj � �j)

Sj(
s2e1
B ;

s2e2
1�B )

#)
, (10.66)

where G� is the cumulative distribution function of the t distribution with � =
NT � p degrees of freedom and the expectation is taken with respect to the beta
random variable in (10.64).
This p-value could be evaluated by exact numerical integrating using for-

mula (10.66) or by Monte Carlo integration using (10.65). As Weerahandi and
Berger(1999) argued, the test obtained in this manner in fact the unique unbi-
ased test based on su¢ cient statistics. Two-sided 100
% con�dence limits for �j
are deduced from (10.66), as in the previous chapters, by equating p to (1+
)=2.
Weerahandi and Berger(1999) also discussed the problem of testing hypothe-

ses involving several or all of the parameters. A general test of hypothesis of the
form H0 : �1= 0 involving a subset of the parameter vector is carried out based
on the error sums of squares S2e2 and S

2
e1, with latter obtained by applying gen-

eralized regressions with and without the null hypothesis. Inferences for linear
combinations of the parameters of the form � = k0� could be based on the result

b� = k0b� � N(�; 1
N
k0(X

0
��1X)

�1
k) (10.67)

and the above results. Since we can employee S2e1 and S
2
e2 to tackle unknown

parameters in (10.67), the corresponding tests could be deduced from the above
results.
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Analysis of data from a growth curve model with structured covariance ma-
trix is an area requiring further research. In particular, there is a need to extend
the above results to the case when �2e varies over time. Other extensions of in-
terest include the cases of multiple variance components and AR type covariance
structures that arise in time series data.

10.8 Comparing Growth Curves

Now suppose there are a number of treatment groups following possibly di¤erent
growth curves. For convenience, let Ygigt, or rather, suppressing the subscript g
in ig; Ygit denote the observation taken from ith subject in gth group at tth time
point. Assuming the same model as in the above section for subjects in each
group we have

Ygit = �gi +X
0
gt�g+�git; (10.68)

g = 1; : : : ; G; i = 1; : : : ; ng;

where �g�s are the parameter vectors of particular interest. In matrix notation,
the counterpart of (10.50) in this case is

Ygi = �gi1T +Xg�g + �gi , (10.69)

where
�gi � N(0; �2�);

and
�git � N(0; �2g);

for all g = 1; : : : ; G; i = 1; : : : ; ng. They are also mutually independent in the
treatment of Chi and Weerahandi (1998), implying that

Var(Ygi) = �g = �
2
�1T1

0

T + �
2
gIT :

Lin and Lee (2003) argued that the results remain valid under the more general
covariance structure,

�g = (�1�
2
� + �2�

2
g)1T1

0

T + [(1� �1)�2� + (1� �2)�2g]IT . (10.70)

In either case, the inverse of the covariance matrix is of the form

��1g =
1

�21g

"
IT �

(�22g � �21g)
T�22g

1T1
0

T

#
;

where
�21g = (1� �1)�2� + (1� �2)�2g (10.71)

and
�22g = �

2
1g + T (�1�

2
� + �2�

2
g) (10.72)
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with the particular case �1 = 1 and �2 = 0 in the Chi and Weerahandi (1998)
treatment. The problem of primary importance is that of comparing growth
curves of di¤erent groups, and especially the problem of testing the hypothesis

�1 = �2 = � � � = �G . (10.73)

De�ne

Yg: =

ngX
i=1

Ygi=ng;

Y gi =
TX
t=1

Ygit=T;

and

Y g =

ngX
i=1

Y gi=ng:

It follows from the results in the previous section that the MLE and the GLSE
of each parameter vector is the same as the LSE and its distribution is normal:

b�g = (X0
gXg)

�1
X0
gYg: � N(�g;((X0

g�
�1
g Xg)

�1
)=ng) (10.74)

First consider the simpler problem of testing the hypothesis (10.73) under
the assumption that group residual variances are all equal; that is,

�21 = �
2
2 = � � � = �2G = �2e (10.75)

so that �g = � for all g. Classical approach to the problem does not provide
exact solutions or good approximations to even this case where there are only
two nuisance parameters. The solution by the generalized approach is quite
straightforward. To derive a test, decompose the residual sum of squares as

SSE =
GX
g=1

ngX
i=1

TX
t=1

(Ygit �X0
gt
b�g)2 = S2e1 + S2e2 ;

where
S2e1 =

X
g

X
i

X
t

(Ygit �X0
gt
b�g�(Y gi � Y g))2; (10.76)

and
S2e2 = T

X
g

X
i

(Yi � Y )2.

These random variables are independently distributed as

W1 =
S2e1
�21

� �2�1 (10.77)
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and

W2 =
S2e2
�22

� �2�2 ,

where �1 = N(T � 1)�G(p� 1), �2 = N �G, N =
P
ng,

�21 = (1� �1)�2� + (1� �2)�2e;

and
�22 = �

2
1 + T (�1�

2
� + �2�

2
e):

Letting ��1=2 denote a positive de�nite square root matrix of ��1, multiplying
both sides of (10.69) we can rewrite the model as

eYgi = eXg�g + egi, (10.78)

where eYgi = �
�1=2Ygi and eXg = �

�1=2Xg. Let

eS21;2(�21; �22) = eS21(�21; �22) + � � �+ eS2G(�21; �22) (10.79)

be the residual sum of squares obtained using model (10.78) when �21 and �
2
2

have been speci�ed to enable the computation of eYgi and eXg. Let eS212(�21; �22)
denote the residual sum of squares obtained under the null hypothesis of identical
growth curves. The distributions of these sums of squares are given by

eS21;2(�21; �22) � �2�3 (10.80)

and eS212(�21; �22) � �2�4 ;
where �3 = NT � pG = �1 + �2, and �4 = NT � p. It is also easily seen that

eS21;2(�21; �22) =
S2e1
�21

+
S2e2
�22

(10.81)

= W1 +W2 � �2�3 (10.82)

and that it is distributed independently of eS212(�21; �22)� eS21;2(�21; �22).
To derive the generalized test for testing the hypothesis (10.73), consider the

potential extreme region de�ned by the inequality�eS212(�21; �22) � es212( s2e1S2e1�21; s
2
e2

S2e2
�22)

�
, (10.83)

a well-de�ned subset of the sample space, where s2e1 and s
2
e2 are the observed

values of the sums of squares S2e1 and S
2
e2, respectively. Obviously, the observed

sample point falls on the boundary of the extreme region and the probability of the
inequality is greater under the alternative hypothesis compared to that under the
null hypothesis, as further clari�ed below. Using the property eS212(k�21; k�22) =
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k�1 eS212(�21; �22) and the identity (10.81) and de�ning a beta random variable
as in the previous section, the generalized p-value for testing the hypothesis of
identical growth curves can be computed as

p = Pr(
eS212(�21; �22)
W1 +W2

� es212( s2e1
W1=(W1 +W2)

;
s2e2

W2=(W1 +W2)
) (10.84)

= Pr

( eS212(�21; �22)eS21;2(�21; �22) � es212(s
2
e1

B
;
s2e2
1�B )

)

= Pr

( eS212(�21; �22)� eS21;2(�21; �22)eS21;2(�21; �22) � es212(s2e1B ;
s2e2
1�B )� 1

)

= 1� E
�
H�;#

�
#

�
(es212(s2e1B ;

s2e2
1�B )� 1)

��
; (10.85)

where B �Beta(�1=2; �2=2), and H�;# is the cdf of F distribution with � =
p(G � 1) and # = NT � pG degrees of freedom. Using widely used software
packages such as SAS and SPlus, the p-value could be computed by Monte Carlo
integration. Without having to code the underlying formulas, the p-value can
be conveniently computed using the XPro software package. It also provides
necessary input for making inferences concerning variance components �2� and
�2e.

Example 10.4. Comparing growth curves with structured covariances

Consider again the data set given in Table 10.3 and let us compare the growth
curves assuming model (10.69). The estimates of growth curve parameters, 
,
estimated now by applying (10.74) for ordinary LSE, is

b
 =
0@ �01
�02
�03

1A =

0@ 8:5612 1:2039
10:385 0:9753
13:052 0:7820

1A
The p-value for testing the equality of growth curves computed using (10.85)
is 0.1288. Note that, as a result of using a structured covariance matrix this
p-value is much less than the one computed using (10.31).

10.9 Case of Unequal Group Variances

Chi and Weerahandi (1998) also provided a procedure for testing the assumption
of equal group variances is reasonable or not. When the assumption is not
reasonable, it is better to drop the assumption rather than risking the accuracy
of tests. Now consider the problem of testing the hypothesis (10.73) without the
assumption of equal error variances made in the above derivation. In this case,
unknown variances can be tackled by means of the residual sum of squares
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S2g =

ngX
i=1

TX
t=1

(Ygit �X0
gt
b�g�(Y gi � Y g))2,

g = 1; � � � ; G.

The distribution of S2g is given by

Ug =
S2g

�21g
� �2�1g , (10.86)

where �1g = ng(T �1)�p+1. Moreover, these random variables are distributed
independently from that of

Vg =
�S2g

�22g
� �2�2g , (10.87)

where �2g = ng � 1, and

�S2g = T

ngX
i=1

(Y gi � Y g)2:

Now we can proceed as before with the same data transformation as in (10.78)
by de�ning

eS21;2(�211; : : : ; �21G; �221; : : : ; �22G) = eS21(�211; �221) + : : :+ eS2G(�21G; �22G); (10.88)
the residual sum of squares obtained using model (10.78) when the parameters
�21g and �

2
2g for all g have been speci�ed to enable computation of eYgi and eXg.

It is easily seen using (10.86), (10.87), and (10.88) that

eS21;2(�211; : : : ; �21G; �221; : : : ; �22G) =X
g

(Ug + Vg) � �2NT�pG (10.89)

Similarly, let eS212(�211; � � � ; �21G; �221; � � � ; �22G) denote the residual sum of squares
obtained under the null hypothesis of identical growth curves. The distributions
of these sums of squares are given by

eS212 � �2�4 and eS212 � eS21;2 � �2� (10.90)

are independently distributed, where �3 = NT � pG, �4 = NT � p; and � =
p(G � 1) = �4 � �3 are the same degrees of freedom as in the equal variances
case, because the nuisance parameters have been speci�ed. Hence, proceeding as
before we can compute the generalized p-value for testing identical growth curves
can be computed as
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p = PrfeS212(�211; : : : ; �21G; �221; : : : ; �22G) � (10.91)

es212( s21S21 �211; : : : ; s
2
G

S2G
�21G;

�s21
�S21
�221; : : : ;

�s2G
�S2G
�22G)g (10.92)

= Pr

 eS212eS21;2 � 1eS21;2 es212( s
2
1

U1
; : : : ;

s2G
UG
;
�s21
V1
; : : : ;

�s2G
VG
)

!
. (10.93)

To express this p-value also as integration with respect to some beta random
variables, de�ne 2G chi-squared random variables observed values as

Rk =

�
Uk
Vk�G

if k � G
if k > G

(10.94)

and

zk =

�
s2k
�s2k�G

if k � G
if k > G

. (10.95)

Since Rk � �2rk , k = 1; : : : 2G are all independent random variables, we can
de�ne 2G� 1 independent beta random variables as

Bl =

lP
k

Rk

l+1P
k

Rk

� Beta(

lP
k

rk

2
;
rl+1
2
) , l = 1; : : : ; ; 2G� 1 , (10.96)

where

rk =

�
�1k
�2(k�G)

if k � G
if k > G

With this notation, the p-value corresponding to the extreme region de�ned by
(10.91) can be computed as

p = Pr

 eS212 � eS21;2eS21;2 �
es212( z1R1

; z2R2
; : : : ; z2GR2G

)

R1 + � � �+R2G
� 1
!

= PrfF � es212( z1
B1B2 � � �B2G�1

; : : : ;

zk
(1�Bk�1)Bk � � �B2G�1

; : : : ;
z2G

(1�B2G�1)
)� 1g

= Pr(1� EfH�;#es212( z1
B1B2 � � �B2G�1

; : : : ;

zk
(1�Bk�1)Bk � � �B2G�1

; : : : ;
z2G

(1�B2G�1)
)� 1g) , (10.97)

where H�;# is the cdf of F distribution with � = p(G � 1) and # = NT � pG
degrees of freedom of F random variable.
Perhaps the simplest way to evaluate this probability is by Monte Carlo In-

tegration. This involve generating large number of beta random variates from
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each of the beta random variables, the value of es212 at for each set of values, and
then the cdf of the F distribution at each value of es212. Finally, the expected
value is estimated by the sample mean of F -values and in turn the p-value. In
this case also the p-value can be conveniently computed using the XPro software
package. Based on formulae given by Chi and Weerahandi(1998), it also pro-
vides various input for making inferences concerning variance components �2�
and �2g; g = 1; � � � ; G.

Example 10.5. Comparing growth curves under unequal error variances

Consider again the data set given in Table 10.3 and let us compare the growth
curves assuming the model (10.69). The estimates of growth curve parameters,

, still computed using (10.74) and remains as.

b
 =
0@ �01
�02
�03

1A =

0@ 8:5612 1:2039
10:385 0:9753
13:052 0:7820

1A
However, their standard errors are now di¤erent. As a result, the p-value for
testing the equality of growth curves computed using (10.97) now becomes 0.0834
and the null hypothesis can be rejected at the 0.1 level of signi�cance. Note that
as a result of dropping the unreasonable assumption of equal error variances,
despite the fact that now we have 2 additional nuisance parameters, this p-
value is less than the one computed under the assumption that they are equal.
This further demonstrates the repercussions of unreasonable assumptions on the
power of a test.
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Exercises

Exercise 16 Consider model (10.2) in generalized MANOVA. Write down the
form of

(a) A matrix if growth curves all subjects are di¤erent,
(b) parameter matrix 
, and the design matrix X if exponential growth curves
with one nuisance parameter, representing the coe¢ cient of time variable are
assumed
(c) A, 
, and X matrices in ordinary MANOVA.

Exercise 17 Consider model (10.2) and hypotheses of the form (10.21). Write
down the form of C and D matrices if

(a) growth curves of group 1 and group 2 are to be compared,
(b) the hypothesis that all polynomial growth curves have the same intercept
term is to be tested,
(c) the hypothesis of identical linear coe¢ cients of polynomial growth curves is
to be tested,
(d) the hypothesis that �rst two growth curves are parallel is to be tested.

Exercise 18 Consider again model (10.2) in generalized MANOVA and as-
sume straight lines for the growth curves. Write down the particular formulae
for computing p-values for testing the hypothesis that

(a) the intercepts of the �rst and the second growth curves are identical,
(b) the slopes of the �rst and the second growth curves are identical,
(c) intercept of ith growth curve is positive,
(d) slope of ith growth curve is positive.

Exercise 19 Repeat the inference procedures carried out in previous exercise
when the covariance matrices has a common intraclass covariance structure.
Repeat the inferences when the covariance structure is of the intraclass form
and yet the error variances of the three growth curves are unequal.

Exercise 20 Consider again the generalized MANOVA model with straight lines
for the growth curves. Write down the particular formulae for Sche¤e and Bon-
ferroni con�dence intervals for the

(a) di¤erence in intercepts of the �rst and the second growth curves,
(b) di¤erence in slopes of the �rst and the second growth curves,
(c) intercept of ith growth curve,
(d) slope of ith growth curve.

Exercise 21 Repeat the inference procedures carried out in the previous exer-
cise when the covariance matrices have a common intraclass covariance struc-
ture. Repeat the inferences when the covariance structure is of the intraclass
form and yet the error variances of the three growth curves are unequal.
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Exercise 22 Consider the data set in Table 10.1 involving one group of sub-
jects. Fit a second-order polynomial to the data. Assuming that the covariance
matrix in unstructured, report

(a) estimates of parameters of the growth curve,
(b) estimates of their standard errors,
(c) p-value for testing the hypothesis that the intercept of the growth curve is
48,
(d) p-value for testing the hypothesis that the growth curve is actually a straight
line,
(e) 95% con�dence intervals for each coe¢ cient of the growth curve.

Exercise 23 Repeat the analyses carried out in the previous exercise when the
covariance matrix has the intraclass covariance structure.

Exercise 24 Consider the data set in Table 10.2 involving three groups of sub-
jects. Fit second-order polynomials to each group and report the estimated coef-
�cients, assuming an unstructured common covariance matrix.

(a) Test the hypothesis that the growth curves are identical.
(b) Test the hypothesis that the growth curves are parallel.
(c) Test the hypothesis that the �rst growth curve is actually a straight line.
(d) Find a 95% con�dence interval for the di¤erence in the slopes of the �rst
two growth curves.
(e) Find a 95% con�dence intervals for coe¢ cients of the �rst growth curve.

Exercise 25 Repeat the analyses carried out in the previous exercise when the
covariance matrices have a common intraclass covariance structure. Repeat the
analyses when the covariance structure is of the intraclass form and yet the error
variances of the three growth curves are unequal.

Exercise 26 Consider the data set in Table 10.3 involving four groups of sub-
jects. Assuming a linear model with an unstructured common covariance matrix,

(a) test the hypothesis that the growth curves are identical,
(b) test the hypothesis that the growth curves are parallel,
(c) 95% con�dence intervals for di¤erence in slopes of the �rst two growth
curves.

Exercise 27 Repeat the analyses carried out in the previous exercise when the
covariance matrices have a common intraclass covariance structure.
Univariate Technical Arguments
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.1 Derivation of the Generalized F -test in One-
Way ANOVA

To express the generalized test in Chapter 2 as a generalized F -test, consider
the p-value derived as

p = Pr(eSB � esB(n1s21
Y1

;
n2s

2
2

Y2
; : : : ;

nks
2
k

Yk
);

where eSB = eSB(�21; : : : ; �2k) � �2k�1;esB is the observed value of eSB, s2i is the observed values of sample variance S2i ,
and

Yi = niS
2
i =�

2
i � �2ni�1: (98)

To express the test in terms of the F distribution and to obtain a computationally
superior representation of the underlying integral, de�ne the independent beta
random variables,

B1 =
Y1

Y1 + Y2
� Beta( (n1 � 1)

2
;
n2 � 1

2
)

Bj =
Y1 + Y2 + � � �+ Yj

Y1 + Y2 + : : :+ Yj + Yj+1
� Beta(

jX
i=1

(ni � 1)
2

;
nj+1 � 1

2
);

j = 2; : : : ; k � 1:

Moreover, the sum of all chi-squared random variables is distributed as

W = Y1 + Y2 + : : :+ Yjk � �2N�k

independently of the beta random variables, where N =
P
ni. It is also known

that W; Bj ; j = 1; 2; : : : ; k � 1 are mutually independent random variables.
Note also that the chi-squared random variables Yi�s can be expressed as

Y1 = WB1B2 � � �Bk�1;

Yi =W (1�Bi�1)Bi � � �Bk�1 for i = 2; : : : ; k;

and

Yk = W (1 � Bk�1);

Therefore, the p-value can be expressed as

p = Pr(eSB � esB( n1s
2
1

WB1B2 � � �Bk�1
; : : : ;

nks
2
k

W (1 � Bk�1)
) )
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But it follows from the de�nition of eSB that it has the property that, for any
given positive constant c and a vector x with positive elements,

eSB(cx1; : : : ; cxk) = eSB(x1; : : : ; xk)=c:
Moreover, under the null hypothesis,

W =
eSB=(k � 1)
W=(N � k) � Fk�1;N�k:

Hence, the p-value can be expressed as

p = Pr(
eSB
W

� esB( n1s
2
1

B1B2 � � �Bk�1
; : : : ;

nks
2
k

(1 � Bk�1)
))

= 1 � E(Hk�1;N�k(
N � k
k � 1 esB [ n1s

2
1

B1B2 � � �Bk�1
;

n2s
2
2

(1�B1)B2 � � �Bk�1
;

n3s
2
3

(1�B2)B3 � � �Bk�1
; : : : ;

nks
2
k

(1�Bk�1)
])); (99)

where Hk�1;N�k is the cdf of F distribution with k � 1 and N � k degrees
of freedom, and the expectation is taken with respect to the independent beta
variables de�ned above.

.2 ANOVA for the Two-Way Layout without
Replicates

Suppose we are interested in the �xed e¤ects of two factors, A and B. Let
A1; A2; : : : ; Ak be the levels of factor A, and let B1; B2; : : : ; Bn be the levels
of factor B. In the two-way layout with no replicates we have just one data for
each combination of factor levels. The available data can be set out as in Table
2.9. To enable analysis of data from an experiment involving the two-way cross
classi�ed design involving no interactions, consider the linear model

Yij = � + �i + �j + �ij ; (100)

i = 1; : : : ; k; j = 1; : : : ; n;

where �i is the ith e¤ect of factor A and �j is the jth e¤ect of factor B stan-

dardized such that
kP
i=1

�i = 0 and
nP
j=1

�j = 0, respectively. We also as-

sume that the residuals are normally distributed with a common variance; i.e.
�ij � N(0; �2): Note that, to avoid over parameterization, we need to assume
in the current problem that error variances are all equal. If the assumption is
not reasonable it is necessary that we obtain more than one observation from
each cell.
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We are interested in testing the equality of factor levels, namely testing the
hypotheses

H0A : �1 = �2 = � � � = �k = 0 (101)

and

H0B : �1 = �2 = � � � = �n = 0 (102)

against the obvious alternative hypotheses.
Consider the sample means Y i:corresponding to factor Ai and the sample

means Y :j corresponding to factor Bj. Let Y be the grand mean of all data
and let N = nk. It is straightforward to see that b�i = Y i: � Y andb�j = Y :j � Y are unbiased estimates of the parameters �i and �j, respectively.
They are also the maximum likelihood estimates of the parameters. Consider the
sums of squares

SA = n

kX
i=1

(Y i: � Y )2 ;

SB = k

nX
j=1

(Y :j � Y )2;

and

SE =
kX
i=1

nX
j=1

(Yij � Y i: � Y :j + Y )2:

As in the one-way ANOVA, various testing procedures can be based on a decom-
position of the total sum of squares ST =

PP
(Yij � Y )2 given by

ST = SA + SB + SE :

The result is easily seen by taking the sum of squares of each side of the identity

(Yij � Y ) = (Y i: � Y ) + (Y :j � Y ) + (Yij � Y i: � Y :j + Y ): (103)

and showing that the cross products of terms on the right hand side sum to zero.
In this case, the mean sums of squares are de�ned as

MSA =
SA

(k � 1) ;

MSB =
SB

(n� 1) ;

and

MSE =
SE

(n� 1)(k � 1) :
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It also follows from zero sums of cross products that the decomposition is orthog-
onal. In turn it follows from the normal theory results that the sums of squares
SA, SB, and SE are mutually independent and that they are distributed as

SE
�2

� �2(n�1)(k�1): (104)

and

SA
�2

� �2k�1 and
SB
�2

� �2n�1 (105)

The distributional result (104) is true in general, and the results in (105) are
valid under H0A and H0B, respectively. Hence, under H0A,

FA =
MSA

MSE
=

SA=a

SE=e
� Fa;e : (106)

where a = k � 1 and e = (n� 1)(k � 1). Furthermore, if H0A is not true the
distributions in (105) and (106), respectively, become non-central chi-squared
and non-central FA distributions. Consequently, unbiased tests of H0A can be
based on the p-value

pa = 1 � Ha;e(
sA=a

sE=e
); (107)

where Ha;bis the cdf of the F distribution with a and b degrees of freedom.
Similarly, testing of the hypothesis H0B can be based on the result

FB =
MSB
MSE

=
SB=(n � 1)

SE=(n� 1)(k � 1)
� Fn�1;(n�1)(k�1): (108)

leading to the p-value

pb = 1 � Hb;e(
sB=b

sE=e
); (109)

where b = n � 1 and e = (n � 1)(k � 1). Various quantities playing a role
in the computation these p-values are summarized by the ANOVA table shown
below, where various sums of squares are denoted by SS and their mean sums of
squares are denoted by MS.

Table 5: Two-way ANOVA table
Source D.F. SS MS F -statistic
A k � 1 sA MSA MSA

MSE

B n � 1 sB MSB MSB
MSE

Error (n� 1)(k � 1) sE MSE
Total nk � 1 sT
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.3 Derivation of F-tests for Two-Way ANOVA
with Replications

Consider the linear model

Yijk = � + �i + �j + 
ij + �ijk; (110)

i = 1; : : : ; I; j = 1; : : : ; J; k = 1; : : : ; nij ;

where 
ij terms represent the interactions and

�ijk � N(0; �2):

Consider the problem of testing zero interactions

H0AB : 
ij = 0 for all i = 1; : : : ; I; j = 1; : : : ; J: (111)

It is also of interest to test the hypotheses that there is no di¤erence in main
e¤ects as speci�ed by H0A and H0B in the previous section. Testing of hypothe-
ses could be based on a decomposition of the total sum of squares into sums of
squares that are attributed to factor A, factor B, the interaction between factors
A and B, and the random error. Consider the partition

ST = SA + SB + SI + SE ; (112)

where

ST =

IX
i=1

JX
j=1

KX
k=1

(Yijk � Y )2;

SA = JK

IX
i=1

(Y i: � Y )2; SB = IK

JX
j=1

(Y :j � Y )2;

SI = K
IX
i=1

JX
j=1

(Y ij � Y i: � Y :j + Y )2;

and

SE =
IX
i=1

JX
j=1

KX
k=1

(Yijk � Y ij)
2 = K

IX
i=1

JX
j=1

S2ij ;

where S2ij is the sample variance (MLE of �
2
ij) of the data from ijth cell.

By the orthogonality of the above decomposition, the sums of squares SA,
SB, and SE are all independently distributed and

SE
�2

� �2N�IJ :
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Moreover, respectively under H0A and H0B ; we have

SA
�2

� �2I�1 ;
SB
�

2

� �2J�1

and under H0AB, we have

SI
�

2

� �2(I�1)(J�1):

Hence, if H0AB is true we get the F -statistic

FI =
MSI
MSE

=
SI=(I � 1)(J � 1)
SE=(N � IJ) � F(I�1)(J�1);N�IJ ; (113)

that is, FI has an F distribution with (I � 1)(J � 1) and N � IJ degrees of
freedom. Moreover, FI tends to take large values for deviations from H0AB.
Therefore, H0AB is tested on the basis of the p-value

pI = 1 � Hi;e(
sI=i

sE=e
); (114)

where i = (I � 1)(J � 1); e = N � IJ , and in general, the notation Ha;b
stands for the cdf of the F distribution with a and b degrees of freedom. At
�xed-level �, H0AB is rejected if the observed value of the FI statistic is greater
than Fi;e(�), the (1��)th quantile of the F distribution with i and e degrees of
freedom.
Similarly, testing of the hypotheses H0B and H0AB can be based on the p-

values

pA = 1 � Ha;e(
sA=a

sE=e
) and pB = 1 � Hb;e(

sB=b

sE=e
); (115)

respectively, where a = I�1 and b = J�1. The main e¤ects and interactions
can also be tested jointly. For instance, to test whether H0A and H0AB are both
true, the sum of squares sA + sI and its degrees of freedom J(I � 1) can be
used in the numerator of the appropriate F -statistic. The computation of the
F-statistics and the p-values is facilitated by the analysis of variance table as
shown below.

.4 Probability Coverage of GCI to the Behrens�Fisher
Problem

The 100
% left-sided generalized con�dence interval is of the form

(x1 � x2)� c
(s21; s22) � �, (116)
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Table 6: Two-way ANOVA with interactions
Source D.F. SS MS F -statistic
A I � 1 SA MSA MSA=MSE
B J � 1 SB MSB MSB=MSE
Interac. (I � 1)(J � 1) sI MSI MSI=MSE
Error N � IJ sE MSE
Total N � 1 sT

where c
(s21; s
2
2) is the solution of the equation

EBGn1+n2�2
(c
(s

2
1; s

2
2)

vuutn1 + n2 � 2
s21
B +

s22
(1�B)

) = 
, (117)

where the expectation is taken with respect to the beta random variable

B � Beta(n1 � 1
2

;
n2 � 1
2

):

Notice that c
(s21; s
2
2) function has the property, c(ks

2
1; ks

2
2) =

p
kc(s21; s

2
2) for

positive real number k. Akahira (1999) obtained a general formula for the proba-
bility coverage and hence the actual size of any two-sided con�dence interval hav-
ing this property. Using the argument of Akahira (1999), the actual size of con-

�dence intervals of the form (116), can be obtained in terms of � = �21=n1
�21=n1+�

2
2=n2

as

p(�) = Pr((X1 �X2)� c(S21 ; S22) � �)

= Pr(Z � c(�21Y1=n1; �
2
2Y2=n2)p

�21=n1 + �
2
2=n2

)

= Pr(Z � c(�Y1; (1� �)Y2)
= Pr(Z �

p
Y c(�B; (1� �)(1�B)))

= EG
n1+n2�2

(
p
n1 + n2 � 2c(�B; (1� �)(1�B))); (118)

where

Y1 =
n1S

2
1

�21
� �2n1�1;

Y2 =
n2S

2
2

�22
� �2n2�1;

and

Y = Y1 + Y2 � �2n1+n2�2:
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.5 Distribution of Sums of Squares of Random
E¤ects Model

Consider the simplest random e¤ects model

Yij = � + �i + �ij ; for i = 1; : : : ; k; j = 1; : : : ; n;

where �ij is the error term representing the deviation of the response of the
jth observation from the mean of observations from Ai, and �i represents the
random e¤ect. Assume that

�ij � N(0; �2�); �i � N(0; �2�) (119)

and that �i; �ij ; i = 1; : : : ; k; j = 1; : : : ; n are mutually independent. Let Y i,
i = 1; : : : ; k be the sample means corresponding to the k random e¤ects and let
Y be the mean of all data. Consider the problem of �nding the distributions of
the sums of squares

SE =

kX
i=1

nX
j=1

(Yij � Y i:)
2 (120)

and

SB = n
kX
i=1

(Y i: � Y )2 (121)

that play an important role in one-way ANOVA models.
It immediately follows from

Y i = � + �i + �i

that

Y i � N(�; �2� + �2�=n); i = 1; : : : ; k . (122)

From standard results valid for sampling a normal population, we also get k
independent and identically distributed chi-squared random variables

nP
j=1

(Yij � Y i:)
2

�2�
� �2n�1; i = 1; : : : ; k . (123)

It follows from (122) that

SE
�2�

� �2k(n�1) (124)

and it follows from (122) that
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SB
�2� + n�2�

� �2k�1. (125)

Moreover, these random variables are independently distributed.

.6 Distributions in Three-Way Random E¤ects
Model

Consider the three-way random e¤ects model

Yijkl = �+ (�i + �j + �k) +

(��ij + ��ik + ��jk) + ���ijk + �ijkl; (126)

i = 1; : : : ; I; j = 1; : : : ; J ; k = 1; : : : ;K; l = 1; : : : ; L;

where �i is the e¤ect due to the ith random level of A, �j is the random e¤ect
due to the jth level of B, and �k is the random e¤ect due to kth level of C.
Terms such as ��ij represents the two way interactions and ��� denotes the
interaction between all three factors. As in the two-way mixed e¤ects model,
assume that the �xed e¤ects are measured as deviations from the overall mean

so that they satisfy the equation
JP
j=1

�j = 0. In three-way random e¤ects it is

assumed that

�i � N(0; �2�);

�j � N(0; �2�);

�k � N(0; �2�)

��ij � N(0; �2��);

��ik � N(0; �2��);

��jk � N(0; �2��)

���ijk � N(0; �2���);
and

�ijkl � N(0; �2�):
ANCOVA in three-way random e¤ects models and mixed models are based on
the sum of squares decomposition

ST = (S� + S� + S�) + (S�� + S�� + S��) + S��� + Se

with de�nitions given in Chapter 4. To describe the approach to deriving the
distribution of the sums of squares, consider for example

S� = JKL
IX
i=1

(Y i:: � Y )2:
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To derive its distribution, consider the identity

(Y i:: � Y ) = (�i � �) + (��i � ��) + (���i � ���) + (�i � �);
= (�i � �);

where
�i = �i + ��i + ���i + ���i: (127)

Since

��i � N(0;
�2��
J
);

���i � N(0;
�2���
JK

);

and

�i � N(0;
�2�
JKL

)

we have

�i � N(0; �2�+
�2��
J

+
�2���
JK

+
�2�
JKL

): (128)

Consequently, from basic results of sampling from a normal distribution, we get
IP
i=1

(�i � �)2

�2�+
�2��
J +

�2���
JK +

�2�
JKL

� �2I�1: (129)

Hence,

S�
JKL�2� +KL�

2
�� + L�

2
��� + �

2
�

=

IP
i=1

(Y i:: � Y )2

�2�+
�2��
J +

�2���
JK +

�2�
JKL

� �2I�1: (130)

The distribution of S� given by (130) also implies that

E(MS�) = E(
S�
I � 1) = JKL�

2
� +KL�

2
�� + L�

2
��� + �

2
� :

Multivariate Technical Arguments

.1 Form of eH1(X;�1;�2) in the Behrens�Fisher
Problem

Consider the generalized test variable

eH1(X;�1; : : : ;�I) =
IX
i=1

T0iTi (131)

=
IX
i=1

(Xi � eX)0��1i (Xi � eX)
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used in the derivation of the generalized MANOVA test in Section 6.5 with the
weights

Wi(�) =

 
IX
i=1

�i

!
��1i ;

where

Ti =Wi(�)(Xi � eX) =Wi�
1=2
i Z

i
�Wi

 
IX
i=1

��1i

!�1 IX
i=1

�
�1=2
i Zi:

When I = 2, the generalized test given by (131) reduces to the test given by (??)
in the two-sample case. To see this, starting with the identity

(��11 +��12 )�1 = �1 (�1 +�2)
�1
�2 = �2 (�1 +�2)

�1
�1;

let us express Ti as

Ti = Wi(Xi � (��11 +��12 )�1(��11 X1 +�
�1
2 X2))

= Wi(Xi ��2 (�1 +�2)�1X1 ��1 (�1 +�2)�1X2)

= �Wi�1 (�1 +�2)
�1
(X1 �X2)

= �(X1 �X2)

= � (�1 +�2)1=2 Z;

where Z =(�1 +�2)
�1=2

(X1 �X2) � N(0; I); and � stands for the signs we
get when i = 1 and 2. Therefore,

eH1(X;�1; : : : ;�I) =
IX
i=1

T0iTi

= 2Z0 (�1 +�2)Z;

which leads to the same test as in (??).

.2 Estimating the Parameters of GMANOVAModel

Consider the Generalized Multivariate Analysis of Variance model

Y = A
B+ � , (132)

where Y is a N � T matrix of responses from N subjects taken over T time
points, A is an among subject design matrix of dimension N � q, B is a p� T
within subject design matrix, and 
 is a q � p matrix of parameters. Assume
that

� � NNT (0;�
 IN ) .
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Then the MLE of 
 is

b
 = (A0A)
�1
A0YS�1B(B

0
S�1B)

�1
;

where
S = Y0(I�A(A0A)

�1
A0)Y:

To establish this result, let us �rst choose components of a T�T nonsingular
matrix C = ( C1 C2 ) such that

BC1= Ip and BC2= 0;

where C1 is a T � p matrix of rank p and C2 is a T � (T � p) matrix of
rank (T � p) That is such that BC = ( Ip 0 ). For example, we could set
C1= B

0(BB
0
)
�1 and C2 to be basis of I�B0(BB0)�1B. Now consider the

transformed observations given byeY = YC

= ( YC1 YC2 )

= ( Y1 Y2 ):

The transformed data allows us to obtain a classical linear model, because

E(Y1) = A
BC1

= A
 (133)

and

E(Y2) = A
BC2

= 0: (134)

Hence, we can express model (117) as

( Y1 Y2 ) = ( A 0 )
 +E;

where E � NNT (0; e�
 IN ) and
e� = � C01�C1 C02�C1

C01�C2 C02�C2

�
:

Therefore, the joint density function of (Y1, Y2) can be expressed as the product
of the conditional density of Y1 given Y2, and the marginal density of Y1 given
by

Y1jY2 � NN(T�p)(A
 +Y2�;�12 
 IN ) (135)

and
Y2 � NNp(0;C02�C2 
 IN ); (136)

where
� = (C02�C2)

�1C02�C1
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and

�12 = C01�C1 �C01�C2(C02�C2)�1C02�C1 (137)

= (B��1B0)�1: (138)

Since the marginal distribution does not involve 
, the MLE of 
 is the same
as the one obtained by maximizing the log likelihood given by (135). By writing
the linear model underlying (135) as

E(Y1jY2 ) = ( A Y2 )

�


�

�
= Z�;

we can obtain the MLE of 
 by partitioning that of �, which is the same as the
usual least squares estimate

b� =

� b
b�
�
= (Z

0
Z)

�1
Z0Y1

=

�
A0A A0Y2

Y0
2A Y0

2Y2

��1�
A0Y1

Y0
2Y1

�
:

De�ne matrices

R = I�A(A0A)
�1
A0;

S = Y0RY;

and

W = (A0A)
�1
A0Y2(Y

0
2Y2 �Y0

2A(A
0A)

�1
A0Y2)

�1:

= (A0A)
�1
A0Y2(Y

0
2RY2)

�1

By applying the formula for inverting a partitioned matrix and using matrix
algebra, thus we get the MLE of 


b
 = (A0A)
�1
A0Y1+WY0

2A(A
0A)

�1
A0Y1 �WY0

2Y1

= (A0A)
�1
A0Y1 �WY0

2RY1

= (A0A)
�1
A0(Y1�Y2(Y

0
2RY2)

�1Y0
2RY1)

= (A0A)
�1
A0Y(C1 �C2(C02SC2)�1C02SC1):

But from (135), which is valid for any �,

C2(C
0
2SC2)

�1C02 = S
�1 � S�1B(B0S�1B)�1B0S�1:

Therefore, b
 can be expressed as
b
 = (A0A)

�1
A0Y(C1 � [S�1 � S�1B(B0S�1B)�1B0S�1]SC1)

= (A0A)
�1
A0YS�1B(B

0
S�1B)

�1
B0C1

= (A0A)
�1
A0YS�1B(B

0
S�1B)

�1
:


